Acoustic emissions associated with the formation of fracture sets in sandstone under polyaxial stress conditions‡

2011 ◽  
Vol 60 (1) ◽  
pp. 93-102 ◽  
Author(s):  
M.S. King ◽  
W.S. Pettitt ◽  
J.R. Haycox ◽  
R.P. Young
2019 ◽  
Vol 49 ◽  
pp. 85-93
Author(s):  
Luke Griffiths ◽  
Jérémie Dautriat ◽  
Ismael Vera Rodriguez ◽  
Kamran Iranpour ◽  
Guillaume Sauvin ◽  
...  

Abstract. Monitoring microseismic activity provides a window through which to observe reservoir deformation during hydrocarbon and geothermal energy production, or CO2 injection and storage. Specifically, microseismic monitoring may help constrain geomechanical models through an improved understanding of the location and geometry of faults, and the stress conditions local to them. Such techniques can be assessed in the laboratory, where fault geometries and stress conditions are well constrained. We carried out a triaxial test on a sample of Red Wildmoor sandstone, an analogue to a weak North Sea reservoir sandstone. The sample was coupled with an array of piezo-transducers, to measure ultrasonic wave velocities and monitor acoustic emissions (AE) – sample-scale microseismic activity associated with micro-cracking. We calculated the rate of AE, localised the AE events, and inferred their moment tensor from P-wave first motion polarities and amplitudes. We applied a biaxial decomposition to the resulting moment tensors of the high signal-to-noise ratio events, to provide nodal planes, slip vectors, and displacement vectors for each event. These attributes were then used to infer local stress directions and their relative magnitudes. Both the AE fracture mechanisms and the inferred stress conditions correspond to the sample-scale fracturing and applied stresses. This workflow, which considers fracture models relevant to the subsurface, can be applied to large-scale geoengineering applications to obtain fracture mechanisms and in-situ stresses from recorded microseismic data.


2002 ◽  
Vol 36 (2) ◽  
pp. 103-109 ◽  
Author(s):  
Guo Yu QIU ◽  
Limi OKUSHIMA ◽  
Sadanori SASE ◽  
In-Bok LEE

1999 ◽  
Vol 24 (4) ◽  
pp. 377-383
Author(s):  
G. A. van zanten ◽  
A. van de sande ◽  
M. P. brocaar

Crisis ◽  
2012 ◽  
Vol 33 (2) ◽  
pp. 106-112 ◽  
Author(s):  
Christopher M. Bloom ◽  
Shareen Holly ◽  
Adam M. P. Miller

Background: Historically, the field of self-injury has distinguished between the behaviors exhibited among individuals with a developmental disability (self-injurious behaviors; SIB) and those present within a normative population (nonsuicidal self-injury; NSSI),which typically result as a response to perceived stress. More recently, however, conclusions about NSSI have been drawn from lines of animal research aimed at examining the neurobiological mechanisms of SIB. Despite some functional similarity between SIB and NSSI, no empirical investigation has provided precedent for the application of SIB-targeted animal research as justification for pharmacological interventions in populations demonstrating NSSI. Aims: The present study examined this question directly, by simulating an animal model of SIB in rodents injected with pemoline and systematically manipulating stress conditions in order to monitor rates of self-injury. Methods: Sham controls and experimental animals injected with pemoline (200 mg/kg) were assigned to either a low stress (discriminated positive reinforcement) or high stress (discriminated avoidance) group and compared on the dependent measures of self-inflicted injury prevalence and severity. Results: The manipulation of stress conditions did not impact the rate of self-injury demonstrated by the rats. The results do not support a model of stress-induced SIB in rodents. Conclusions: Current findings provide evidence for caution in the development of pharmacotherapies of NSSI in human populations based on CNS stimulant models. Theoretical implications are discussed with respect to antecedent factors such as preinjury arousal level and environmental stress.


Planta Medica ◽  
2014 ◽  
Vol 80 (10) ◽  
Author(s):  
F Nabbie ◽  
O Shperdheja ◽  
J Millot ◽  
J Lindberg ◽  
B Peethambaran

2015 ◽  
Vol 6 (2) ◽  
Author(s):  
Nur Hidaayah

Stress conditions in the elderly means an imbalance condition of biological, psychological, and social are closely related to the response to the threats and dangers faced by the elderly. Pressure or interference that is not fun is usually created when the elderly see a mismatch between the state and the 3 systems available resources. Maintenance actions that need to be done there are 2 types, namely : prevention of exposure to a stressor (precipitation factor) and serious treatment of the imbalance condition/ illness (precipitation factor). Prevention includes: sports, hobbies, friendship, avoid eating foods high in free radicals and harmful substances, sex and setting arrangements adequate rest. Habits of the above if done at a young age to avoid exposure to stress in the elderly. Treatment of the imbalance condition / illness, include : drinking water, meditation, eating fresh fruit, and adequate rest.


Sign in / Sign up

Export Citation Format

Share Document