scholarly journals Acoustic Emissions in Tomato Plants under Water Stress Conditions

2002 ◽  
Vol 36 (2) ◽  
pp. 103-109 ◽  
Author(s):  
Guo Yu QIU ◽  
Limi OKUSHIMA ◽  
Sadanori SASE ◽  
In-Bok LEE
Author(s):  
Slimani Afafe ◽  
Harkousse Oumaima ◽  
Mazri Mouaad Amine ◽  
Zouahri Abdelmajid ◽  
Ouahmane Lahcen ◽  
...  

Background: Plant strategies for adapting to drought could be improved by associations between plant roots and soil microorganisms, including arbuscular mycorrhizal fungi (AMF) and plant growth promoting rhizobacteria (PGPR). In this study, the impact of a selected AMF complex and a selected PGPR species on the growth of tomato (Lycopersicum esculentum Mill.) under induced water stress was evaluated. Methods: Three different inoculation treatments were applied to tomato seedlings (a complex of AMF composed mainly of Glomus genus a Bacillus sp. PGPR treatment and a combination of both) and three different water levels (75%, 50% and 25% of field capacity). Result: A significant damaging impact of drought on tomato growth parameters and root mycorrhizal colonization, although the presence of microbes stimulated tomato plants growth and decreased the impact ofdrought stress. Indeed inoculated plants presented greater heights, fresh and dry weights, leaves number and area; greater water status; and greater proteins, sugars and chlorophylls contents either with the AMF complex or the Bacillus sp. in normal and drought stress conditions compared to the non-inoculated plants. However dual inoculation recorded the highest values under all water levels treatments.


2013 ◽  
Vol 51 (1-2) ◽  
pp. 119-125 ◽  
Author(s):  
Barbara Dyki ◽  
Jan Borowski ◽  
Waldemar Kowalczyk

The reaction of tomato plants cv. Tukan F<sub>1</sub> to copper deficiency and to water stress was compared. Plants grown in copper deficiency and in conditions of water stress were significantly smaller than controls. They had also lower turgor. The epidermis cells of the upper side leaf in the plants growing in copper deficiency or water stress conditions were smaller than in control plants. However the stomata and trichomes number of leaves plants with copper or water deficiency grown were bigger in comparision with control. The pores of stomata were always larger in leaves of control plants than in other objects.


2010 ◽  
Vol 335 (1-2) ◽  
pp. 339-347 ◽  
Author(s):  
Eva Sánchez-Rodríguez ◽  
Maria del Mar Rubio-Wilhelmi ◽  
Luis Miguel Cervilla ◽  
Begoña Blasco ◽  
Juan Jose Rios ◽  
...  

2021 ◽  
pp. 1-22
Author(s):  
Amanullah ◽  
Mohammad Yar ◽  
Shah Khalid ◽  
Mohamed Soliman Elshikh ◽  
Hafiz M. Akram ◽  
...  

Plants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 27
Author(s):  
Mahmoud M. Gaballah ◽  
Azza M. Metwally ◽  
Milan Skalicky ◽  
Mohamed M. Hassan ◽  
Marian Brestic ◽  
...  

Drought is the most challenging abiotic stress for rice production in the world. Thus, developing new rice genotype tolerance to water scarcity is one of the best strategies to achieve and maximize high yield potential with water savings. The study aims to characterize 16 rice genotypes for grain and agronomic parameters under normal and drought stress conditions, and genetic differentiation, by determining specific DNA markers related to drought tolerance using Simple Sequence Repeats (SSR) markers and grouping cultivars, establishing their genetic relationship for different traits. The experiment was conducted under irrigated (normal) and water stress conditions. Mean squares due to genotype × environment interactions were highly significant for major traits. For the number of panicles/plants, the genotypes Giza179, IET1444, Hybrid1, and Hybrid2 showed the maximum mean values. The required sterility percentage values were produced by genotypes IET1444, Giza178, Hybrid2, and Giza179, while, Sakha101, Giza179, Hybrid1, and Hybrid2 achieved the highest values of grain yield/plant. The genotypes Giza178, Giza179, Hybrid1, and Hybrid2, produced maximum values for water use efficiency. The effective number of alleles per locus ranged from 1.20 alleles to 3.0 alleles with an average of 1.28 alleles, and the He values for all SSR markers used varied from 0.94 to 1.00 with an average of 0.98. The polymorphic information content (PIC) values for the SSR were varied from 0.83 to 0.99, with an average of 0.95 along with a highly significant correlation between PIC values and the number of amplified alleles detected per locus. The highest similarity coefficient between Giza181 and Giza182 (Indica type) was observed and are susceptible to drought stress. High similarity percentage between the genotypes (japonica type; Sakha104 with Sakha102 and Sakha106 (0.45), Sakha101 with Sakha102 and Sakha106 (0.40), Sakha105 with Hybrid1 (0.40), Hybrid1 with Giza178 (0.40) and GZ1368-S-5-4 with Giza181 (0.40)) was also observed, which are also susceptible to drought stress. All genotypes are grouped into two major clusters in the dendrogram at 66% similarity based on Jaccard’s similarity index. The first cluster (A) was divided into two minor groups A1 and A2, in which A1 had two groups A1-1 and A1-2, containing drought-tolerant genotypes like IET1444, GZ1386-S-5-4 and Hybrid1. On the other hand, the A1-2 cluster divided into A1-2-1 containing Hybrid2 genotype and A1-2-2 containing Giza179 and Giza178 at coefficient 0.91, showing moderate tolerance to drought stress. The genotypes GZ1368-S-5-4, IET1444, Giza 178, and Giza179, could be included as appropriate materials for developing a drought-tolerant variety breeding program. Genetic diversity to grow new rice cultivars that combine drought tolerance with high grain yields is essential to maintaining food security.


2018 ◽  
Vol 40 (1) ◽  
pp. 36-43 ◽  
Author(s):  
Ayslan Trindade Lima ◽  
Paulo Henrique de Jesus da Cunha ◽  
Bárbara França Dantas ◽  
Marcos Vinicius Meiado

Abstract: Seed hydration memory is the ability of seeds to retain biochemical and physiological changes caused by discontinuous hydration. This study aimed to determine if Senna spectabilis (DC.) H.S. Irwin & Barneby var. excelsa (Schrad.) H.S.Irwin & Barneby (Fabaceae) present seed memory and evaluate the effects of hydration and dehydration cycles (HD) on the seed germination of this species when submitted to conditions of water stress. Seeds underwent HD cycles (0, 1, 2 and 3 cycles) corresponding to the hydration times X (6 hours), Y (16 hours) and Z (24 hours), determined from the imbibition curve, with 5 hours of dehydration and submitted to water stress conditions. Germination was evaluated at 0.0, -0.1, -0.3, -0.6 and -0.9 MPa, obtained with polyethylene glycol 6000 solution. Germinability (%), mean germination time (days) and hydrotime (MPa d-1) were calculated. The seeds of S. spectabilis var. excelsa are sensitive to the low osmotic potentials tested in this study, however, when submitted to the HD cycles of 16 hours hydration (time Y), the tolerance to water stress conditions is increased. In addition, the observed benefits on the evaluated germination parameters show that S. spectabilis var. excelsa present seed hydation memory.


Sign in / Sign up

Export Citation Format

Share Document