Influence of Anion and Cation on the Water-Holding Capacity of Bovine Hide Collagen at Different pH Values. Effect of Sodium Chloride and Polyphosphates on Hydration

1982 ◽  
Vol 47 (3) ◽  
pp. 705-710 ◽  
Author(s):  
M. D. RANGANAYAKI ◽  
A. ASGHAR ◽  
R. L. HENRICKSON
2019 ◽  
Vol 32 ◽  
pp. 302-319
Author(s):  
Khadeeja S.J. Al-Husseiny ◽  
Maryam T. Khrebish

The current study aimed to estimate the pigments of some muscles parts taken from cows, sheep and chicken (thigh, chest and back). The chemical content including moisture, protein, lipids and ash, as well as the pH and the water holding capacity have been evaluated. Results showed that the moisture differed among three animals with high percentage of moisture, ash and lipid in back in compared with other parts of cows. while significant difference in the percentage of ash of back with other parts and in protein in chest with other parts of sheep. The significant differences were recorded in percentage of ash of three parts of chicken, also significant differences between chest and back. The water holding capacity of fresh meat samples taken from thigh, chest and back of cows, sheep and chicken significantly differ among samples. pH values which reflect a confect in water holding capacity of meat samples taken from different parts of the body and from different animal. In addition, there was a significant differences in the percentage of the presences of myoglobin, metmyoglobin and oxymyoglobin in different samples taken from different parts of the slaughtered animals.


1963 ◽  
Vol 9 (4) ◽  
pp. 555-561 ◽  
Author(s):  
Zofia Maciejowska ◽  
E. B. Williams

The fungus flora developing in cellulose-amended and non-amended soils of neutral pH at moisture levels of 60, 70, and 80% water-holding capacity (WHC) was investigated. A distinct, successive development of three species, Staphylotrichum coccosporum, Coccospora agricola, and Sependonium sp., was observed in soil held at 60% WHC. More species developed in soil held at 70% WHC, and they could effectively coexist during cellulose decomposition. S. coccosporum developed in smaller numbers at 80% WHC than at 60 and 70% WHC. Sepedonium sp. was associated with cellulose decomposition only at 80% WHC. Species of Trichoderma, Monilia, and Fusarium developed better at high moisture levels. It was concluded that available inoculum and the moisture of soils of similar pH values are major factors in determining composition of the microflora of cellulose-amended soil.


Author(s):  
Son Khanh Trinh ◽  
Linh Thuy Nguyen ◽  
Thien Trung Le ◽  
Han Thi Ngoc Le

Fish Protein Concentrate (FPC) was produced from Pangasius Catfish fillet using isopropanol and ethanol at pHI=5.5. FPC had molecular weights of <11 and 35 kDa. Based on FAO standard, FPC powder was type A. FPC had protein, lipid, ash and moisture contents of 91.8, 0.12, 0.69 and 3.12 % respectively. Contents of essential and conditionally essential amino acids were 38.28 and 36.51 %, respectively, were higher than those of the FAO/WHO standard. This indicated that FPC from Pangasius Catfish had highly nutritional value. The results showed that the protein solubility of KPC was depend on the concentration and seasonings/additive type following the ascending order: sodium chloride (NaCl)< sucrose<sorbitol<sodium tripolyphosphate (STTP). Besides, NaCl, sucrose and sorbitol mostly did not affect to water holding capacity of FPC whilst STPP increased this property. Chilling and freezing storage caused changes of water holding capacity and protein solubility. However, these changes were not so much.


2013 ◽  
Vol 10 (1) ◽  
pp. 65
Author(s):  
Normah Ismail ◽  
Najihah Shukor ◽  
Zainal Samicho

Silver catfish (Pangasius sutchi) skin gelatin was extracted to determine the effects of extraction time on the functional properties of the gelatin in terms of solubility, protein solubility as a function of pH and sodium chloride concentration, emulsifying capacity and stability, water holding capacity, fat binding capacities and foaming properties. Silver catfish skins were washed in sodium chloride (NaCl) solution prior to pre-treatment in sodium hydroxide (NaOH) and acetic acid solution. Gelatin was extracted at 50ºC for 6, 8, 10 and 12 hours extraction time followed by freeze drying. The extraction of silver catfish skin gelatin at 50 ºC for 12 hours was more effective than extraction at 6, 8 and 10 hours where the gelatin was characterized by higher emulsifying capacity (52.63%), emulsifying stability (47.83%), water holding capacity (31.78 mL/g), fat binding capacities (54.76%), foaming capacity (41.47 mL) and foaming stability (56.42%) than gelatins extracted at other extraction time. The longer the extraction time, the better the functional properties of the gelatin. Based on its good functional properties, silver catfish skin gelatin may be useful in various food applications such as soups, sauces and gravies.


Sign in / Sign up

Export Citation Format

Share Document