Effects of Extraction Time on the Functional Properties of Silver Catfish (Pangasius sutchi) Skin Gelatin

2013 ◽  
Vol 10 (1) ◽  
pp. 65
Author(s):  
Normah Ismail ◽  
Najihah Shukor ◽  
Zainal Samicho

Silver catfish (Pangasius sutchi) skin gelatin was extracted to determine the effects of extraction time on the functional properties of the gelatin in terms of solubility, protein solubility as a function of pH and sodium chloride concentration, emulsifying capacity and stability, water holding capacity, fat binding capacities and foaming properties. Silver catfish skins were washed in sodium chloride (NaCl) solution prior to pre-treatment in sodium hydroxide (NaOH) and acetic acid solution. Gelatin was extracted at 50ºC for 6, 8, 10 and 12 hours extraction time followed by freeze drying. The extraction of silver catfish skin gelatin at 50 ºC for 12 hours was more effective than extraction at 6, 8 and 10 hours where the gelatin was characterized by higher emulsifying capacity (52.63%), emulsifying stability (47.83%), water holding capacity (31.78 mL/g), fat binding capacities (54.76%), foaming capacity (41.47 mL) and foaming stability (56.42%) than gelatins extracted at other extraction time. The longer the extraction time, the better the functional properties of the gelatin. Based on its good functional properties, silver catfish skin gelatin may be useful in various food applications such as soups, sauces and gravies.

2011 ◽  
Vol 236-238 ◽  
pp. 2647-2650
Author(s):  
Guo Qin Liu ◽  
Xiao Jun Liu ◽  
Lin Li ◽  
Bing Li

The effects of frozen storage time on the functional properties of frozen wheat gluten were evaluated. The frozen wheat gluten was subjected to frozen storage in refrigerator at-18°C for 0–120days. The samples were obtained by the process of freeze-drying. The main functional properties of frozen wheat gluten were determined to confirm the effects of frozen storage time on functional properties of frozen wheat gluten. Results showed that solubility, water-holding capacity, emulsifying capacity, foamability and foam stability of frozen wheat gluten decreased and that oil-holding capacity, emulsion stability of frozen wheat gluten were improved with prolonged frozen storage time.


10.5219/1022 ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 224-233 ◽  
Author(s):  
Petr Mrázek ◽  
Pavel Mokrejš ◽  
Robert Gál ◽  
Jana Orsavová

Poultry meat-processing industry produces considerably large amounts of by-products (such as chicken skins, heads, feathers, viscera, bones and legs) containing significant volumes of proteins, particularly collagen. One of the possibilities of advantageous utilization of these under-used by-products can be their application as a raw material rich in collagen for preparation of gelatine, a partial hydrolysate of collagen. In the present study, chicken skins obtained as a by-product from the chicken-breast processing were purified from non-collagen proteins, pigments and fats. Collagen was treated with proteolytic enzymes and the gelatine extraction was performed in distilled water at temperatures of 40, 50, 60, 70 and 80 °C during the constant extraction time of 60 min. The influence of the technological conditions on gelatine functional properties including viscosity, clarity, water holding and fat binding capacity, emulsifying and foaming properties was explored. Certain functional properties of prepared gelatines were significantly affected by the extraction temperature, while on some other properties the extraction temperature had no significant effect. Viscosity of prepared chicken skin gelatines was in the range from 3 to 5.7 mPa.s, clarity from 1.5 to 2%, water holding capacity from 3.8 to 5.6 mL.g-1, fat binding capacity from 0.9 to 1.3 mL.g-1, emulsion capacity from 35 to 50%, emulsion stability from 73 to 88%, foaming capacity from 18 to 61% and finally foaming stability was from 4 to 39%. Chicken skin gelatines were compared with commercial food grade pork and beef gelatines. Prepared chicken skin gelatines showed better viscosity, fat binding capacity and foaming stability than mammalian gelatines, while water holding capacity, emulsifying stability and foaming capacity were not as good as in beef and pork gelatines. Emulsifying capacity was comparable with commercial gelatines. Therefore, chicken skin gelatine has the potential as an alternative to traditional gelatines from mammalian sources, such as pork or beef bones and skins.


2015 ◽  
Vol 1 (2) ◽  
pp. 67
Author(s):  
Haq Nawaz ◽  
Muhammad Aslam Shad ◽  
Rabia Mehmood ◽  
Tanzila Rehman ◽  
Hira Munir

<p>Functional properties such as protein solubility, swelling capacity, water holding capacity, gelling ability, bulk density and foaming capacity of flours of some commonly used cereals and legume (wheat, refined wheat, maize and chickpea) and their blends were studied. Blends of flours were prepared by mixing equal proportions of selected floors. Statistically significant difference  in studied functional properties except bulk density was observed among cereal flours and their blends. Chickpea flour was found to possess comparatively high water holding capacity, protein solubility index and swelling capacity. The functional properties of maize and wheat flours were found to be improved when blended with chickpea. Chickpea flour and its blends with cereal flours were found to possess good functional score and suggested as favorable candidates for use in the preparation of viscous foods and bakery products. The data provide guidelines regarding the improvement in functional properties of economically favorable cereal flours.<strong></strong></p>


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Na Thi Ty Ngo ◽  
Fereidoon Shahidi

AbstractCamelina and flixweed (sophia) seed protein isolates were prepared using both the conventional extraction and ultrasonic-assisted extraction methods at 40 kHz for 20 min, and their functional properties investigated. SDS-PAGE showed that both ultrasound-assisted and conventional extractions resulted in a similar protein profile of the extract. The application of ultrasound significantly improved protein extraction/content and functional properties (water holding capacity, oil absorption capacity, emulsifying foaming properties, and protein solubility) of camelina protein isolate and sophia protein isolate. The water-holding and oil absorption capacities of sophia protein isolate were markedly higher than those of camelina protein isolate. These results suggest that camelina protein isolate and sophia protein isolate may serve as natural functional ingredients in the food industry. Graphical Abstract


Author(s):  
Ardiyan Dwi Masahid ◽  
Maria Belgis ◽  
Helyas Vintan Agesti

Adlay is a nutritious grain that has the potential as an alternative food because it has a high protein and fat content of 14.10% and 7.90%, respectively. The use of Adlay as flour still has a weakness, namely the functional properties of Adlay flour such as low swelling power. One way to improve the characteristics of Adlay flour is by fermentation using Rhizopus oligosporus. The fermentation duration is the time that allows changes in the characteristics of the flour due to the fermentation. This study aims to determine the effect of differences in fermentation duration using Rhizopus oligosporus on the physical, chemical, and functional characteristics of Adlay flour produced from fermented Adlay seeds. This study used one factor, namely the lengths of fermentation for 0, 12, 24, 30, 36 and 48 hours. The analysis in this study included whiteness, yield, pH, water content, ash content, protein content, fat content, carbohydrate content, swelling power and solubility, oil holding capacity (OHC) and water holding capacity (WHC). The results have shown that the longer the fermentation duration the lower rate of whiteness, pH, yield, water content, fat content, and carbohydrate content will become, while some functional properties of Adlay flour become better with increasing values of ash content, protein content, swelling power, solubility, Oil Holding Capacity (OHC), and Water Holding Capacity (WHC).


Sign in / Sign up

Export Citation Format

Share Document