Inactivation Kinetics of Foodborne Spoilage and Pathogenic Bacteria by Ozone

2000 ◽  
Vol 65 (3) ◽  
pp. 521-528 ◽  
Author(s):  
J.-G. Kim ◽  
A.E. Yousef
2019 ◽  
Vol 25 (7) ◽  
pp. 562-572 ◽  
Author(s):  
Manreet S Bhullar ◽  
Ankit Patras ◽  
Agnes Kilonzo-Nthenge ◽  
Bharat Pokharel ◽  
Michael Sasges

This study investigated the effect of ultraviolet-C irradiation on the inactivation of microorganisms in coconut water, a highly opaque liquid food (1.01 ± 0.018 absorption coefficient). Ultraviolet-C inactivation kinetics of two bacteriophages (MS2, T1UV) and three surrogate bacteria ( Escherichia coli, Salmonella Typhimurium, Listeria monocytogenes) in 0.1% (w/v) peptone and coconut water were investigated. Ultraviolet-C irradiation at 254 nm was applied to stirred samples, using a collimated beam device. A series of known ultraviolet-C doses (0–40 mJ cm−2) were applied for ultraviolet-C treatment except for MS2 where higher doses were delivered (100 mJ cm−2). Inactivation levels of all organisms were proportional to ultraviolet-C dose. At the highest dose of 40 mJ cm−2, three surrogates of pathogenic bacteria were inactivated by more than 5-log10 (p < 0.05) in 0.1% (w/v) peptone and coconut water. Results showed that ultraviolet-C irradiation effectively inactivated bacteriophage and surrogate bacteria in highly opaque coconut water. The log reduction kinetics of microorganisms followed log-linear and exponential models with higher R2 (>0.95) and low root mean square error values. The D10 values of 3, 5.48, and 4.58 mJ cm−2 were obtained from the inactivation of E. coli, S. Typhimurium, and L. monocytogenes, respectively. Models for predicting log reduction as a function of ultraviolet-C irradiation dose were found to be significant (p < 0.05). Fluid optics were the key controlling parameters for efficient microbial inactivation. Therefore, the ultraviolet-C dose must be calculated not only from the incident ultraviolet-C intensity but must also consider the attenuation in the samples. The results from this study imply that adequate log reduction of vegetative cells and model viruses is achievable in coconut water and suggested significant potential for ultraviolet-C treatment of other liquid foods.


2019 ◽  
Vol 79 (2) ◽  
pp. 251-259 ◽  
Author(s):  
Marwa Ben Saad ◽  
Myriam Ben Said ◽  
Isabel Sanz-Sáez ◽  
Olga Sánchez ◽  
Jordi Morató ◽  
...  

Abstract The main goal of the present study was to enhance the rhizobacterium potential in a horizontal subsurface flow constructed wetland system planted with Phragmites australis, through environmentally friendly biological approaches. The bioinoculation of antagonist bacteria has been used to promote higher rhizosphere competence and improve pathogenic bacteria removal from wastewater. The experiment was performed both with single and sequential bioinoculation. The results showed that strain PFH1 played an active role in pathogenic bacteria removal, remarkably improving inactivation kinetics of the pathogenic tested bacterium Salmonella typhi in the plant rhizosphere. The single bioinoculation of selected bacteria into the rhizosphere of P. australis improved the kinetics of S. typhi inactivation by approximately 1 U-Log10 (N/N0) (N is the number of viable cultured bacteria at time t, N0 is the number of viable and cultivable bacteria at time t0) compared to the control. By a series of multi-bioinoculations, the enhancement of pathogenic bacteria reduction compared to the inhibition rate in the pilot-scale control was of 2 U-Log10(N/N0). These findings suggested that this strain represents a promising candidate to enhance water purification in constructed wetlands.


LWT ◽  
2021 ◽  
Vol 142 ◽  
pp. 111037
Author(s):  
Leonardo do Prado-Silva ◽  
Verônica O. Alvarenga ◽  
Gilberto Ú.L. Braga ◽  
Anderson S. Sant’Ana

2012 ◽  
Vol 19 (11) ◽  
pp. 1177-1182
Author(s):  
Ji-Ping Zhang ◽  
Bo Leng ◽  
Qian-Sheng Huang ◽  
Ya-Wen Yan ◽  
Xuan Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document