raw milk cheese
Recently Published Documents


TOTAL DOCUMENTS

134
(FIVE YEARS 32)

H-INDEX

31
(FIVE YEARS 5)

Author(s):  
Francielly Soares Oliveira ◽  
Rafaela da Silva Rodrigues ◽  
Antônio Fernandes de Carvalho ◽  
Luís Augusto Nero

2021 ◽  
Vol 9 (10) ◽  
pp. 2032
Author(s):  
Giulia Pagliasso ◽  
Alessia Di Blasio ◽  
Nicoletta Vitale ◽  
Angelo Romano ◽  
Lucia Decastelli ◽  
...  

Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of chronic proliferative enteritis found in ruminants, known as paratuberculosis (PTB). The spread of PTB is increasing in countries with advanced animal husbandry practices, leading to significant economic losses. Moreover, a supposed zoonotic role of MAP in Crohn’s disease (CD) in humans has been discussed by the scientific community; however, although the association between MAP and CD has generally been accepted, it is still up for debate if MAP is the main cause of CD, a contributing factor, or merely a commensal organism for the development of CD. The aim of this study was to assess the survival of MAP during the entire production process of a traditional Italian goat’s raw milk fresh cheese, the “Robiola di Roccaverano”, assessing the survival rate and persistence of MAP in the final product. A mix of MAP field isolates from goats of the Roccaverano area and a reference ATCC strain were used to carry out milk in experimental inoculation. Samples of milk, curd and cheese were taken in two consecutive batches of production. Microbiological challenge tests, evaluated by f57-qPCR, showed a significant decrease in MAP charge during the cheesemaking process for both batches, suggesting the productive process has an impact on MAP survival.


2021 ◽  
Vol 53 (1) ◽  
Author(s):  
Dragan Milićević ◽  
Greta Krešić ◽  
Danijela Vranić ◽  
Tina Lešić ◽  
Jelana Nedeljković-Trailović ◽  
...  

The aim of this study was to determine the nutritional properties of raw milk, cheese and a traditional creamy dairy product called kajmak originating from the Zlatibor region in Serbia. Chemical composition, minerals, fatty acid (FA) profile, lipid quality indices, and the dietary intake of saturated fatty acids (SFA), cholesterol, salt and sodium were investigated in three sampling sessions during the period June–September 2019. All chemical properties of raw milk, cheese and kajmak differed significantly (P<0.05), except lactose, salt and total proteins. Palmitic acid (C16:0) was present in the highest share, followed by oleic (C18:1cis-9) and myrstic (C14:0) acids, with no significant differences (P>0.05) between products. Among the FAs, conjugated linoleic acids (CLA) were determined, and mean values of total FAs ranged from 0.16% in raw milk and kajmak to 0.31% in cheese. The recommended values for the lipid quality indices were not obtained for the analysed products. Despite a high sodium content, the tested dairy products can be considered valuable sources of calcium, chromium, zinc and selenium. In the future, additional efforts should be employed in product modification with the aim of optimising nutritional value and to obtain the protect designation of origin.


2021 ◽  
Vol 9 (5) ◽  
pp. 938
Author(s):  
Adriana Lobacz ◽  
Justyna Zulewska

The aim of this study was to determine the survival kinetics of Salmonella spp. in unripened, fresh raw milk cheese during storage at 5, 15 and 25 °C. Microbiological (coliforms and E. coli, S. thermophilus, Lactococcus sp., total microbial count and Enterobacteriaceae) and physicochemical (pH and aw) characteristics were also determined. Two primary models were used to estimate the kinetic parameters of Salmonella spp., namely Weibull and Baranyi and Roberts (no lag) models. Additionally, goodness-of-fit of the primary models was assessed by calculating the R-Square and mean square error. Salmonella spp. growth in the unripened raw milk cheese was inhibited during storage, but nevertheless bacteria survived at 5 °C for 33 days (2.5 log cfu/g) and 15 °C for 18 days (1.8 log cfu/g). A decrease in the number of Salmonella spp. populations from an initial concentration 6.6 log cfu/g to below a detection limit was observed at 25 °C after 7 days of storage of contaminated cheese samples. It was concluded that the storage temperature significantly influenced the inactivation rate of Salmonella spp. in fresh raw milk cheese and proceeded faster at 25 °C compared to remaining storage temperatures.


2021 ◽  
Author(s):  
A. Tonamo ◽  
I. Komlósi ◽  
L. Varga ◽  
M. Kačániová ◽  
F. Peles

AbstractThe objective of this study was to use matrix-assisted laser desorption ionisation–time of flight mass spectrometry (MALDI-TOF MS) for the identification of ovine-associated staphylococci. Presumptive Staphylococcus isolates were recovered from ovine udder surface (US), individual raw milk, bulk tank milk, and cheese samples and were characterised by conventional phenotypic methods. A total of 69 bacterial isolates were further confirmed by MALDI-TOF MS. Forty-two (60.9%) of 69 isolates were successfully identified on genus and species level. Two thirds (n = 28) of the 42 identified isolates were shown to be Staphylococcus spp. These 28 staphylococcal isolates formed two clusters, one consisting of 22 Staphylococcus aureus strains and the other composed of 6 non-aureus staphylococci, including S. simulans (n = 3), S. auricularis, S. equorum, and S. haemolyticus. MALDI-TOF MS has proven to be a reliable tool for the identification of staphylococci from raw sheep's milk, especially bulk tank milk; however, currently it appears to be less useful for the identification of bacterial isolates originating from ovine US samples. This is the first study to evaluate the applicability of MALDI-TOF MS for identification of Staphylococcus spp. in ovine raw milk, cheese, and US samples in Hungary.


2021 ◽  
Vol 12 ◽  
Author(s):  
Felipe Molina ◽  
Alfredo Simancas ◽  
Manuel Ramírez ◽  
Rafael Tabla ◽  
Isidro Roa ◽  
...  

In recent years, the spread of antibiotic-resistant bacteria and efforts to preserve food microbiota have induced renewed interest in phage therapy. Phage cocktails, instead of a single phage, are commonly used as antibacterial agents since the hosts are unlikely to become resistant to several phages simultaneously. While the spectrum of activity might increase with cocktail complexity, excessive phages could produce side effects, such as the horizontal transfer of genes that augment the fitness of host strains, dysbiosis or high manufacturing costs. Therefore, cocktail formulation represents a compromise between achieving substantial reduction in the bacterial loads and restricting its complexity. Despite the abovementioned points, the observed bacterial load reduction does not increase significantly with the size of phage cocktails, indicating the requirement for a systematic approach to their design. In this work, the information provided by host range matrices was analyzed after building phage-bacteria infection networks (PBINs). To this end, we conducted a meta-analysis of 35 host range matrices, including recently published studies and new datasets comprising Escherichia coli strains isolated during ripening of artisanal raw milk cheese and virulent coliphages from ewes’ feces. The nestedness temperature, which reflects the host range hierarchy of the phages, was determined from bipartite host range matrices using heuristic (Nestedness Temperature Calculator) and genetic (BinMatNest) algorithms. The latter optimizes matrix packing, leading to lower temperatures, i.e., it simplifies the identification of the phages with the broadest host range. The structure of infection networks suggests that generalist phages (and not specialist phages) tend to succeed in infecting less susceptible bacteria. A new metric (Φ), which considers some properties of the host range matrices (fill, temperature, and number of bacteria), is proposed as an estimator of phage cocktail size. To identify the best candidates, agglomerative hierarchical clustering using Ward’s method was implemented. Finally, a cocktail was formulated for the biocontrol of cheese-isolated E. coli, reducing bacterial counts by five orders of magnitude.


Author(s):  
Raimondo Gaglio ◽  
Massimo Todaro ◽  
Luca Settanni

This review article focuses on the technological aspects and microbiological critical points of pressed-cooked cheeses processed from raw ewe’s milk without the inoculation of starter cultures, in particular “Pecorino” cheese typology produced in Italy. After showing the composition of the biofilms adhering to the surface of the traditional dairy equipment (mainly wooden vat used to collect milk) and the microbiological characteristics of PDO Pecorino Siciliano cheese manufactured throughout Sicily, this cheese is taken as a case study to develop a strategy to improve its hygienic and safety characteristics. Basically, the natural lactic acid bacterial populations of fresh and ripened cheeses were characterized to select an autochthonous starter and non-starter cultures to stabilize the microbial community of PDO Pecorino Siciliano cheese. These bacteria were applied at a small scale level to prove their in situ efficacy, and finally introduced within the consortium for protection and promotion of this cheese to disseminate their performances to all dairy factories. The innovation in PDO Pecorino Siciliano cheese production was proven to be respectful of the traditional protocol, the final cheeses preserved their typicality, and the general cheese safety was improved. An overview of the future research prospects is also reported.


Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 350
Author(s):  
Luisa Pellegrino ◽  
Johannes A. Hogenboom ◽  
Veronica Rosi ◽  
Paolo D’Incecco

The implementation of quality assurance schemes for the assessment of PDO food authenticity is an issue involving manufacturers, traders, retailers and consumers. In this respect, reliable analytical methods are needed to integrate paper-trailing information. The feasibility of distinguishing the Italian Fontina PDO cheese from the generic Fontal cheese was preliminarily evaluated on a set of commercial samples by measuring selected parameters (pH, alkaline phosphatase activity, content of copper, volatiles, extent of proteolysis) related to the different manufacturing processes. The relative profile of free amino acids proved to be a promising tool. A new set of 41 samples of Fontina PDO cheese was collected at representative dairies within the recognized production area and analyzed for free amino acids. A chemometric model of Fontina PDO cheese was built based on the mean content and standard deviation of 15 free amino acids. On this basis, all of the PDO samples were correctly identified, whereas all of the Fontal cheeses were recognized as different cheeses.


2021 ◽  
Vol 11 ◽  
Author(s):  
Claudia Cortimiglia ◽  
Maria Francesca Borney ◽  
Daniela Bassi ◽  
Pier Sandro Cocconcelli

Shiga-toxin-producing Escherichia coli (STEC) represents a significant cause of foodborne disease. In the last years, an increasing number of STEC infections associated with the consumption of raw and pasteurized milk cheese have been reported, contributing to raise the public awareness. The aim of this study is to evaluate the main genomic features of STEC strains isolated from a semi-hard raw milk cheese, focusing on their pathogenic potential. The analysis of 75 cheese samples collected during the period between April 2019 and January 2020 led to the isolation of seven strains from four stx-positive enrichment. The genome investigation evidenced the persistence of two serotypes, O174:H2 and O116:H48. All strains carried at least one stx gene and were negative for eae gene. The virulence gene pattern was homogeneous among the serogroup/ST and included adherence factors (lpfA, iha, ompT, papC, saa, sab, hra, and hes), enterohemolysin (ehxA), serum resistance (iss, tra), cytotoxin-encoding genes like epeA and espP, and the Locus of Adhesion and Autoaggregation Pathogenicity Islands (LAA PAIs) typically found in Locus of Enterocyte Effacement (LEE)-negative STEC. Genome plasticity indicators, namely, prophagic sequences carrying stx genes and plasmid replicons, were detected, leading to the possibility to share virulence determinants with other strains. Overall, our work adds new knowledge on STEC monitoring in raw milk dairy products, underlining the fundamental role of whole genome sequencing (WGS) for typing these unknown isolates. Since, up to now, some details about STEC pathogenesis mechanism is lacking, the continuous monitoring in order to protect human health and increase knowledge about STEC genetic features becomes essential.


Sign in / Sign up

Export Citation Format

Share Document