A centrifugation method for standardized sedimentation of mononuclear human blood cells on glass for scanning electron microscopy

1984 ◽  
Vol 136 (3) ◽  
pp. 315-321 ◽  
Author(s):  
C. H. Wouters ◽  
S. Hesseling ◽  
W. Th. Daems ◽  
J. S. Ploem
Author(s):  
Victor Tsutsumi ◽  
Adolfo Martinez-Palomo ◽  
Kyuichi Tanikawa

The protozoan parasite Entamoeba histolytica is the causative agent of amebiasis in man. The trophozoite or motile form is a highly dynamic and pleomorphic cell with a great capacity to destroy tissues. Moreover, the parasite has the singular ability to phagocytize a variety of different live or death cells. Phagocytosis of red blood cells by E. histolytica trophozoites is a complex phenomenon related with amebic pathogenicity and nutrition.


2016 ◽  
Vol 26 (3) ◽  
pp. 381-390 ◽  
Author(s):  
Sargylana N. Mamayeva ◽  
◽  
Yana A. Munkhalova ◽  
Irina V. Kononova ◽  
Afanasiy A. Dyakonov ◽  
...  

Author(s):  
Mamaeva S.N. ◽  
Vinokurov R.R. ◽  
Munkhalova Ya.A. ◽  
Dyakonova D.P. ◽  
Platonova V.A. ◽  
...  

Currently, due to the intensive development of high-tech science-intensive medical and research devices, more and more attention is paid to the development of diagnostics of rare and difficult to diagnose diseases. It is known that among numerous nephropathies, hematuria may be the only symptom of kidney and urinary tract diseases, which complicates their diagnosis and treatment. In order to develop new approaches for the diagnosis of nephropathies, the authors have been studying the morphology of red blood cells in the blood and urine of children and adults using a scanning electron microscope for several years. The paper presents the results of studies of children with various kidney diseases, including IgA-nephropathy, and chronic glomerulonephritis. Scanning electron microscopy was used for the first time to detect nanoparticles on the surface of red blood cells, the size of which is comparable to the size of viruses, which became the basis for one of the authors ' assumptions, namely, the possible transport of certain types of viruses by red blood cells. Thus, some kidney diseases could be considered virus-associated. This paper presents for the first time the results of determining the glomerular filtration rate of both kidneys separately in the study of separate kidney function and of the study of urine smears obtained during catheterization of the ureters in patients with hydronephrosis of one of the kidneys by scanning electron microscopy. As in previous studies, nanoparticles were found on the surface of red blood cells, which leads to the conclusion about the possible viral nature of the disease of the considered patient. In addition, smear images obtained using a microscope showed a significant difference in the elements of the right and left kidneys urine, which did not contradict the data on the study of glomerular filtration rate. According to the authors, the capabilities of the scanning electron microscope can be applied in fundamental research of kidney diseases at the cellular and molecular levels, forming new ideas about their origin, as well as on the basis of which new methods of non-invasive diagnostics can be built.


Author(s):  
Rafael R. Khismatullin ◽  
Shahnoza Abdullayeva ◽  
Alina D. Peshkova ◽  
Khetam Sounbuli ◽  
Natalia G Evtugina ◽  
...  

Blood clots and thrombi undergo platelet-driven contraction/retraction followed by structural rearrangements. We have established quantitative relationships between the composition of blood clots and extent of contraction to determine intravital contraction of thrombi and emboli based on their content. The composition of human blood clots and thrombi was quantified using histology and scanning electron microscopy. Contracting blood clots segregated into the gradually shrinking outer layer that contains a fibrin-platelet mesh and the expanding inner portion with compacted red blood cells (RBCs). At 10% contraction, biconcave RBCs were partially compressed into polyhedral RBCs, which became dominant at 20% contraction and higher. The polyhedral/biconcave RBC ratio and the extent of contraction displayed an exponential relationship, which was used to determine the extent of intravital contraction of ex vivo thrombi, ranging from 30% to 50%. In venous thrombi, the extent of contraction decreased gradually from the older (head) to the younger (body, tail) parts. In pulmonary emboli, the extent of contraction was significantly lower than in the venous head, but was similar to the body and tail, suggesting that the emboli originate from the younger portion(s) of venous thrombi. The extent of contraction in arterial cerebral thrombi was significantly higher than in the younger parts of venous thrombi (body, tail) and pulmonary emboli, but was indistinguishable from the older part (head). A novel tool, named the "contraction ruler," has been developed to use the composition of ex vivo thrombi to assess the extent of their intravital contraction, which contributes to the pathophysiology of thromboembolism.


2005 ◽  
Vol 284-286 ◽  
pp. 671-674 ◽  
Author(s):  
Patricia Valério ◽  
Simeon Agathopoulos ◽  
A.J. Calado ◽  
M. Fatima Leite ◽  
Alfredo Goes

Samples of zirconia and a bioinert SiO2-containing glass with different surface roughness were immersed into human whole blood for different settling times to investigate the adhesion and attachment of blood cells onto these materials. The cell/material interface was directly observed by scanning electron microscopy (SEM). The results indicate that the blood cells preserved their physiology and attaching capability regardless the type of material, surface roughness, and settling time. The SEM images strongly indicate the normal function of adhesion proteins.


Sign in / Sign up

Export Citation Format

Share Document