Gene flow inDubautia arboreaandD. ciliolata: the roles of ecology and isolation by distance in maintaining species boundaries despite ongoing hybridization

2007 ◽  
Vol 16 (19) ◽  
pp. 4028-4038 ◽  
Author(s):  
E. A. FRIAR ◽  
J. M. CRUSE-SANDERS ◽  
M. E. McGLAUGHLIN
Author(s):  
Rhett M Rautsaw ◽  
Tristan D Schramer ◽  
Rachel Acuña ◽  
Lindsay N Arick ◽  
Mark DiMeo ◽  
...  

Abstract The migration-selection balance often governs the evolution of lineages, and speciation with gene flow is now considered common across the tree of life. Ecological speciation is a process that can facilitate divergence despite gene flow due to strong selective pressures caused by ecological differences; however, the exact traits under selection are often unknown. The transition from freshwater to saltwater habitats provides strong selection targeting traits with osmoregulatory function. Several lineages of North American watersnakes (Nerodia spp.) are known to occur in saltwater habitat and represent a useful system for studying speciation by providing an opportunity to investigate gene flow and evaluate how species boundaries are maintained or degraded. We use double digest restriction-site associated DNA sequencing to characterize the migration-selection balance and test for evidence of ecological divergence within the Nerodia fasciata-clarkii complex in Florida. We find evidence of high intraspecific gene flow with a pattern of isolation-by-distance underlying subspecific lineages. However, we identify genetic structure indicative of reduced gene flow between inland and coastal lineages suggesting divergence due to isolation-by-environment. This pattern is consistent with observed environmental differences where the amount of admixture decreases with increased salinity. Furthermore, we identify significantly enriched terms related to osmoregulatory function among a set of candidate loci, including several genes that have been previously implicated in adaptation to salinity stress. Collectively, our results demonstrate that ecological differences, likely driven by salinity, cause strong divergent selection which promotes divergence in the N. fasciata-clarkii complex despite significant gene flow.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Maysa Tiemi Motoki ◽  
Dina Madera Fonseca ◽  
Elliott Frederic Miot ◽  
Bruna Demari-Silva ◽  
Phoutmany Thammavong ◽  
...  

Abstract Background The Asian tiger mosquito, Aedes (Stegomyia) albopictus (Skuse) is an important worldwide invasive species and can be a locally important vector of chikungunya, dengue and, potentially, Zika. This species is native to Southeast Asia where populations thrive in both temperate and tropical climates. A better understanding of the population structure of Ae. albopictus in Lao PDR is very important in order to support the implementation of strategies for diseases prevention and vector control. In the present study, we investigated the genetic variability of Ae. albopictus across a north-south transect in Lao PDR. Methods We used variability in a 1337-bp fragment of the mitochondrial cytochrome c oxidase subunit 1 gene (cox1), to assess the population structure of Ae. albopictus in Lao PDR. For context, we also examined variability at the same genetic locus in samples of Ae. albopictus from Thailand, China, Taiwan, Japan, Singapore, Italy and the USA. Results We observed very high levels of genetic polymorphism with 46 novel haplotypes in Ae. albopictus from 9 localities in Lao PDR and Thailand populations. Significant differences were observed between the Luangnamtha population and other locations in Lao PDR. However, we found no evidence of isolation by distance. There was overall little genetic structure indicating ongoing and frequent gene flow among populations or a recent population expansion. Indeed, the neutrality test supported population expansion in Laotian Ae. albopictus and mismatch distribution analyses showed a lack of low frequency alleles, a pattern often seen in bottlenecked populations. When samples from Lao PDR were analyzed together with samples from Thailand, China, Taiwan, Japan, Singapore, Italy and the USA, phylogenetic network and Bayesian cluster analysis showed that most populations from tropical/subtropical regions are more genetically related to each other, than populations from temperate regions. Similarly, most populations from temperate regions are more genetically related to each other, than those from tropical/subtropical regions. Conclusions Aedes albopictus in Lao PDR are genetically related to populations from tropical/subtropical regions (i.e. Thailand, Singapore, and California and Texas in the USA). The extensive gene flow among locations in Lao PDR indicates that local control is undermined by repeated introductions from untreated sites.


2019 ◽  
Vol 128 (3) ◽  
pp. 583-591
Author(s):  
Leo Joseph ◽  
Alex Drew ◽  
Ian J Mason ◽  
Jeffrey L Peters

Abstract We reassessed whether two parapatric non-sister Australian honeyeater species (Aves: Meliphagidae), varied and mangrove honeyeaters (Gavicalis versicolor and G. fasciogularis, respectively), that diverged from a common ancestor c. 2.5 Mya intergrade in the Townsville area of north-eastern Queensland. Consistent with a previous specimen-based study, by using genomics methods we show one-way gene flow for autosomal but not Z-linked markers from varied into mangrove honeyeaters. Introgression barely extends south of the area of parapatry in and around the city of Townsville. While demonstrating the long-term porosity of species boundaries over several million years, our data also suggest a clear role of sex chromosomes in maintaining reproductive isolation.


Crustaceana ◽  
1993 ◽  
Vol 65 (2) ◽  
pp. 265-277 ◽  
Author(s):  
Barbara A. Stewart

AbstractThe use of protein electrophoretic data for determining species boundaries in amphipods is addressed. Analysis of published literature on genetic differentiation in amphipods showed that pairs of allopatric populations which have genetic identities (I) above a value of 0.85 probably represent intraspecific populations, whereas pairs of populations which have genetic identities below about 0.45 probably represent different species. It was recommended that if I values fall between 0.45 and 0.85, additional factors such as evidence of a lack of gene flow between the populations, and concordant morphological variation should be considered.


2020 ◽  
Author(s):  
Thomas L Schmidt ◽  
T. Swan ◽  
Jessica Chung ◽  
Stephan Karl ◽  
Samuel Demok ◽  
...  

AbstractPopulation genomic approaches can characterise dispersal across a single generation through to many generations in the past, bridging the gap between individual movement and intergenerational gene flow. These approaches are particularly useful when investigating dispersal in recently altered systems, where they provide a way of inferring long-distance dispersal between newly established populations and their interactions with existing populations. Human-mediated biological invasions represent such altered systems which can be investigated with appropriate study designs and analyses. Here we apply temporally-restricted sampling and a range of population genomic approaches to investigate dispersal in a 2004 invasion of Aedes albopictus (the Asian tiger mosquito) in the Torres Strait Islands (TSI) of Australia. We sampled mosquitoes from 13 TSI villages simultaneously and genotyped 373 mosquitoes at genome-wide single nucleotide polymorphisms (SNPs): 331 from the TSI, 36 from Papua New Guinea (PNG), and 4 incursive mosquitoes detected in uninvaded regions. Within villages, spatial genetic structure varied substantially but overall displayed isolation by distance and a neighbourhood size of 232–577. Close kin dyads revealed recent movement between islands 31–203 km apart, and deep learning inferences showed incursive Ae. albopictus had travelled to uninvaded regions from both adjacent and non-adjacent islands. Private alleles and a coancestry matrix indicated direct gene flow from PNG into nearby islands. Outlier analyses also detected four linked alleles introgressed from PNG, with the alleles surrounding 12 resistance-associated cytochrome P450 genes. By treating dispersal as both an intergenerational process and a set of discrete events, we describe a highly interconnected invasive system.


2020 ◽  
Author(s):  
Aaliyah D. Wright ◽  
Nicole L. Garrison ◽  
Ashantye’ S. Williams ◽  
Paul D. Johnson ◽  
Nathan V. Whelan

AbstractMany freshwater gastropod species face extinction, including 79% of species in the family Pleuroceridae. The Oblong Rocksnail, Leptoxis compacta, is a narrow range endemic pleurocerid from the Cahaba River basin in central Alabama that has seen rapid range contraction in the last 100 years. Such a decline is expected to negatively affect genetic diversity in the species. However, precise patterns of genetic variation and gene flow across the restricted range of L. compacta are unknown. This lack of information limits our understanding of human impacts on the Cahaba River system and Pleuroceridae. Here, we show that L. compacta has likely seen a species-wide decline in genetic diversity, but remaining populations have relatively high genetic diversity. We also report a contemporary range extension compared to the last published survey. Leptoxis compacta does not display an isolation by distance pattern, contrasting patterns seen in many riverine taxa. Our findings also indicate that historical range contraction has resulted in the absence of common genetic patterns seen in many riverine taxa like isolation by distance as the small distribution of L. compacta allows for relatively unrestricted gene flow across its remaining range despite limited dispersal abilities. Two collection sites had higher genetic diversity than others, and broodstock sites for future captive propagation and reintroduction efforts should utilize sites identified here as having the highest genetic diversity. Broadly, our results support the hypothesis that range contraction will result in the reduction of species-wide genetic diversity, and common riverscape genetic patterns cannot be assumed to be present in species facing extinction risk.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9789
Author(s):  
Aaliyah D. Wright ◽  
Nicole L. Garrison ◽  
Ashantye’ S. Williams ◽  
Paul D. Johnson ◽  
Nathan V. Whelan

Many freshwater gastropod species face extinction, including 79% of species in the family Pleuroceridae. The Oblong Rocksnail, Leptoxis compacta, is a narrow range endemic pleurocerid from the Cahaba River basin in central Alabama that has seen rapid range contraction in the last 100 years. Such a decline is expected to negatively affect genetic diversity in the species. However, precise patterns of genetic variation and gene flow across the restricted range of L. compacta are unknown. This lack of information limits our understanding of human impacts on the Cahaba River system and Pleuroceridae. Here, we show that L. compacta has likely seen a species-wide decline in genetic diversity, but remaining populations have relatively high genetic diversity. We also report a contemporary range extension compared to the last published survey. Our findings indicate that historical range contraction has resulted in the absence of common genetic patterns seen in many riverine taxa like isolation by distance as the small distribution of L. compacta allows for relatively unrestricted gene flow across its remaining range despite limited dispersal abilities. Two collection sites had higher genetic diversity than others, and broodstock sites for future captive propagation and reintroduction efforts should utilize sites identified here as having the highest genetic diversity. Broadly, our results support the hypothesis that range contraction will result in the reduction of species-wide genetic diversity, and common riverscape genetic patterns cannot be assumed to be present in species facing extinction risk.


Apidologie ◽  
2007 ◽  
Vol 38 (2) ◽  
pp. 141-155 ◽  
Author(s):  
Irati Miguel ◽  
Mikel Iriondo ◽  
Lionel Garnery ◽  
Walter S. Sheppard ◽  
Andone Estonba

2018 ◽  
Vol 285 (1884) ◽  
pp. 20180819 ◽  
Author(s):  
Anna Fijarczyk ◽  
Katarzyna Dudek ◽  
Marta Niedzicka ◽  
Wiesław Babik

The importance of interspecific introgression as a source of adaptive variation is increasingly recognized. Theory predicts that beneficial genetic variants cross species boundaries easily even when interspecific hybridization is rare and gene flow is strongly constrained throughout the genome. However, it remains unclear whether certain classes of genes are particularly prone to adaptive introgression. Genes affected by balancing selection (BS) may constitute such a class, because forms of BS that favour novel, initially rare alleles, should facilitate introgression. We tested this hypothesis in hybridizing newts by comparing 13 genes with signatures of BS, in particular an excess of common non-synonymous polymorphisms, to the genomic background (154 genes). Parapatric hybridizing taxa were less differentiated in BS candidate genes than more closely related allopatric lineages, while the opposite was observed in the control genes. Coalescent and forward simulations that explored neutral and BS scenarios under isolation and migration showed that processes other than differential gene flow are unlikely to account for this pattern. We conclude that BS, probably involving a form of novel allele advantage, promotes introgression. This mechanism may be a source of adaptively relevant variation in hybridizing species over prolonged periods.


2019 ◽  
Vol 190 (1) ◽  
pp. 65-78 ◽  
Author(s):  
Kin Onn Chan ◽  
Rafe M Brown

Abstract The interplay between environmental attributes and evolutionary processes can provide valuable insights into how biodiversity is generated, partitioned and distributed. This study investigates the role of spatial, environmental and historical factors that could potentially drive diversification and shape genetic variation in Malaysian torrent frogs. Torrent frogs are ecologically conserved, and we hypothesize that this could impose tight constraints on dispersal routes, gene flow and consequently genetic structure. Moreover, levels of gene flow were shown to vary among populations from separate mountain ranges, indicating that genetic differentiation could be influenced by landscape features. Using genome-wide single nucleotide polymorphisms, in conjunction with landscape variables derived from Geographic Information Systems, we performed distance-based redundancy analyses and variance partitioning to disentangle the effects of isolation-by-distance (IBD), isolation-by-resistance (IBR) and isolation-by-colonization (IBC). Our results demonstrated that IBR contributed minimally to genetic variation. Intraspecific population structure can be largely attributed to IBD, whereas interspecific diversification was primarily driven by IBC. We also detected two distinct population bottlenecks, indicating that speciation events were likely driven by vicariance or founder events.


Sign in / Sign up

Export Citation Format

Share Document