Type IV pili‐dependent gliding motility in the Gram‐positive pathogenClostridium perfringensand other Clostridia

2006 ◽  
Vol 62 (3) ◽  
pp. 680-694 ◽  
Author(s):  
John J. Varga ◽  
Van Nguyen ◽  
David K. O'Brien ◽  
Katherine Rodgers ◽  
Richard A. Walker ◽  
...  
2016 ◽  
Vol 44 (6) ◽  
pp. 1659-1666 ◽  
Author(s):  
Kurt H. Piepenbrink ◽  
Eric J. Sundberg

Type IV pili are hair-like bacterial surface appendages that play a role in diverse processes such as cellular adhesion, colonization, twitching motility, biofilm formation, and horizontal gene transfer. These extracellular fibers are composed exclusively or primarily of many copies of one or more pilin proteins, tightly packed in a helix so that the highly hydrophobic amino-terminus of the pilin is buried in the pilus core. Type IV pili have been characterized extensively in Gram-negative bacteria, and recent advances in high-throughput genomic sequencing have revealed that they are also widespread in Gram-positive bacteria. Here, we review the current state of knowledge of type IV pilus systems in Gram-positive bacterial species and discuss them in the broader context of eubacterial type IV pili.


Microbiology ◽  
2005 ◽  
Vol 151 (2) ◽  
pp. 353-360 ◽  
Author(s):  
Yinuo Li ◽  
Renate Lux ◽  
Andrew E. Pelling ◽  
James K. Gimzewski ◽  
Wenyuan Shi

Myxococcus xanthus possesses a social gliding motility that requires type IV pili (TFP). According to the current model, M. xanthus pili attach to an external substrate and retract, pulling the cell body forward along their long axis. By analogy with the situation in other bacteria employing TFP-dependent motility, M. xanthus pili have been assumed to be composed of pilin (PilA) subunits, but this has not previously been confirmed. The first 28 amino acids of the M. xanthus PilA protein share extensive homology with the N-terminal oligomerization domain of pilins in other bacterial species. To facilitate purification, the authors engineered a truncated form of M. xanthus PilA lacking the first 28 amino acids and purified this protein in soluble form. Polyclonal antibody generated against this protein was reactive with native pilin and pili. Using this antibody, it was confirmed that TFP of M. xanthus are indeed composed of PilA, and that TFP are located unipolarly and required for social gliding motility via retraction. Using tethering as well as motility assays, details of pili function in M. xanthus social motility were further examined.


2017 ◽  
Vol 199 (10) ◽  
Author(s):  
William A. Hendrick ◽  
Mona W. Orr ◽  
Samantha R. Murray ◽  
Vincent T. Lee ◽  
Stephen B. Melville

ABSTRACT The Gram-positive pathogen Clostridium perfringens possesses type IV pili (TFP), which are extracellular fibers that are polymerized from a pool of pilin monomers in the cytoplasmic membrane. Two proteins that are essential for pilus functions are an assembly ATPase (PilB) and an inner membrane core protein (PilC). Two homologues each of PilB and PilC are present in C. perfringens, called PilB1/PilB2 and PilC1/PilC2, respectively, along with four pilin proteins, PilA1 to PilA4. The gene encoding PilA2, which is considered the major pilin based on previous studies, is immediately downstream of the pilB2 and pilC2 genes. Purified PilB2 had ATPase activity, bound zinc, formed hexamers even in the absence of ATP, and bound the second messenger molecule cyclic di-GMP (c-di-GMP). Circular dichroism spectroscopy of purified PilC2 indicated that it retained its predicted degree of alpha-helical secondary structure. Even though no direct interactions between PilB2 and PilC2 could be detected in vivo or in vitro even in the presence of c-di-GMP, high levels of expression of a diguanylate cyclase from C. perfringens (CPE1788) stimulated polymerization of PilA2 in a PilB2- and PilC2-dependent manner. These results suggest that PilB2 activity is controlled by c-di-GMP levels in vivo but that PilB2-PilC2 interactions are either transitory or of low affinity, in contrast to results reported previously from in vivo studies of the PilB1/PilC1 pair in which PilC1 was needed for polar localization of PilB1. This is the first biochemical characterization of a c-di-GMP-dependent assembly ATPase from a Gram-positive bacterium. IMPORTANCE Type IV pili (TFP) are protein fibers involved in important bacterial functions, including motility, adherence to surfaces and host cells, and natural transformation. All clostridia whose genomes have been sequenced show evidence of the presence of TFP. The genetically tractable species Clostridium perfringens was used to study proteins involved in polymerizing the pilin, PilA2, into a pilus. The assembly ATPase PilB2 and its cognate membrane protein partner, PilC2, were purified. PilB2 bound the intracellular signal molecule c-di-GMP. Increased levels of intracellular c-di-GMP led to increased polymerization of PilA2, indicating that Gram-positive bacteria use this molecule to regulate pilus synthesis. These findings provide valuable information for understanding how pathogenic clostridia regulate TFP to cause human diseases.


2021 ◽  
Author(s):  
Trinh Lam ◽  
Courtney K. Ellison ◽  
Ankur B. Dalia ◽  
David T. Eddington ◽  
Donald A. Morrison

SUMMARYThe competence pili of transformable Gram-positive species form a subset of the diverse and widespread class of extracellular filamentous organelles known as type IV pili (T4P). In Gram-negative bacteria, T4P act through dynamic cycles of extension and retraction to carry out diverse activities including attachment, motility, protein secretion, and DNA uptake. It remains unclear whether T4P in Gram-positive species exhibit this same dynamic activity, and their mechanism of action for DNA uptake remains unclear. They are hypothesized to either (1) passively form transient cavities in the cell wall to facilitate DNA passage, (2) act as static adhesins to enrich DNA near the cell surface for subsequent uptake by membrane-embedded transporters, or (3) play an active role in translocating bound DNA via their dynamic activity. Here, using a recently described pilus labeling approach, we demonstrate that pneumococcal competence pili are highly dynamic structures that rapidly extend and retract from the cell surface. By labeling ComGC with bulky adducts, we further demonstrate that pilus retraction is essential for natural transformation. Together, our results indicate that Gram-positive type IV competence pili are dynamic and retractile structures that play an active role in DNA uptake.Short summaryCompetent pneumococci kill non-competent cells on contact. Retractable DNA-binding fibers in the class of type IV pili may provide a key tool for retrieving DNA segments from cell wreckage for internalization and recombination.


2010 ◽  
Vol 192 (17) ◽  
pp. 4267-4274 ◽  
Author(s):  
Wesley P. Black ◽  
Florian D. Schubot ◽  
Zhuo Li ◽  
Zhaomin Yang

ABSTRACT Myxococcus xanthus social gliding motility, which is powered by type IV pili, requires the presence of exopolysaccharides (EPS) on the cell surface. The Dif chemosensory system is essential for the regulation of EPS production. It was demonstrated previously that DifA (methyl-accepting chemotaxis protein [MCP]-like), DifC (CheW-like), and DifE (CheA-like) stimulate whereas DifD (CheY-like) and DifG (CheC-like) inhibit EPS production. DifD was found not to function downstream of DifE in EPS regulation, as a difD difE double mutant phenocopied the difE single mutant. It has been proposed that DifA, DifC, and DifE form a ternary signaling complex that positively regulates EPS production through the kinase activity of DifE. DifD was proposed as a phosphate sink of phosphorylated DifE (DifE∼P), while DifG would augment the function of DifD as a phosphatase of phosphorylated DifD (DifD∼P). Here we report in vitro phosphorylation studies with all the Dif chemosensory proteins that were expressed and purified from Escherichia coli. DifE was demonstrated to be an autokinase. Consistent with the formation of a DifA-DifC-DifE complex, DifA and DifC together, but not individually, were found to influence DifE autophosphorylation. DifD, which did not inhibit DifE autophosphorylation directly, was found to accept phosphate from autophosphorylated DifE. While DifD∼P has an unusually long half-life for dephosphorylation in vitro, DifG efficiently dephosphorylated DifD∼P as a phosphatase. These results support a model where DifE complexes with DifA and DifC to regulate EPS production through phosphorylation of a downstream target, while DifD and DifG function synergistically to divert phosphates away from DifE∼P.


2008 ◽  
Vol 76 (11) ◽  
pp. 4944-4951 ◽  
Author(s):  
John J. Varga ◽  
Blair Therit ◽  
Stephen B. Melville

ABSTRACT The predominant organizational state of bacteria in nature is biofilms. Biofilms have been shown to increase bacterial resistance to a variety of stresses. We demonstrate for the first time that the anaerobic gram-positive pathogen Clostridium perfringens forms biofilms. At the same concentration of glucose in the medium, optimal biofilm formation depended on a functional CcpA protein. While the ratio of biofilm to planktonic growth was higher in the wild type than in a ccpA mutant strain in middle to late stages of biofilm development, the bacteria shifted from a predominantly biofilm state to planktonic growth as the concentration of glucose in the medium increased in a CcpA-independent manner. As is the case in some gram-negative bacteria, type IV pilus (TFP)-dependent gliding motility was necessary for efficient biofilm formation, as demonstrated by laser confocal and electron microscopy. However, TFP were not associated with the bacteria in the biofilm but with the extracellular matrix. Biofilms afforded C. perfringens protection from environmental stress, including exposure to atmospheric oxygen for 6 h and 24 h and to 10 mM H2O2 for 5 min. Biofilm cells also showed 5- to 15-fold-increased survival over planktonic cells after exposure to 20 μg/ml (27 times the MIC) of penicillin G for 6 h and 24 h, respectively. These results indicate C. perfringens biofilms play an important role in the persistence of the bacteria in response to environmental stress and that they may be a factor in diseases, such as antibiotic-associated diarrhea and gas gangrene, that are caused by C. perfringens.


PLoS ONE ◽  
2011 ◽  
Vol 6 (12) ◽  
pp. e28919 ◽  
Author(s):  
Saheed Imam ◽  
Zhongqiang Chen ◽  
David S. Roos ◽  
Mechthild Pohlschröder

2000 ◽  
Vol 182 (20) ◽  
pp. 5793-5798 ◽  
Author(s):  
Zhaomin Yang ◽  
Xiaoyuan Ma ◽  
Leming Tong ◽  
Heidi B. Kaplan ◽  
Lawrence J. Shimkets ◽  
...  

ABSTRACT Myxococcus xanthus social (S) gliding motility has been previously reported by us to require the chemotaxis homologues encoded by the dif genes. In addition, two cell surface structures, type IV pili and extracellular matrix fibrils, are also critical to M. xanthus S motility. We have demonstrated here that M. xanthus dif genes are required for the biogenesis of fibrils but not for that of type IV pili. Furthermore, the developmental defects of dif mutants can be partially rescued by the addition of isolated fibril materials. Along with the chemotaxis genes of various swarming bacteria and the pilGHIJ genes of the twitching bacteriumPseudomonas aeruginosa, the M. xanthus dif genes belong to a unique class of bacterial chemotaxis genes or homologues implicated in the biogenesis of structures required for bacterial surface locomotion. Genetic studies indicate that the dif genes are linked to theM. xanthus dsp region, a locus known to be crucial forM. xanthus fibril biogenesis and S gliding.


1999 ◽  
Vol 63 (3) ◽  
pp. 621-641 ◽  
Author(s):  
Alfred M. Spormann

SUMMARY Gliding motility is observed in a large variety of phylogenetically unrelated bacteria. Gliding provides a means for microbes to travel in environments with a low water content, such as might be found in biofilms, microbial mats, and soil. Gliding is defined as the movement of a cell on a surface in the direction of the long axis of the cell. Because this definition is operational and not mechanistic, the underlying molecular motor(s) may be quite different in diverse microbes. In fact, studies on the gliding bacterium Myxococcus xanthus suggest that two independent gliding machineries, encoded by two multigene systems, operate in this microorganism. One machinery, which allows individual cells to glide on a surface, independent of whether the cells are moving alone or in groups, requires the function of the genes of the A-motility system. More than 37 A-motility genes are known to be required for this form of movement. Depending on an additional phenotype, these genes are divided into two subclasses, the agl and cgl genes. Videomicroscopic studies on gliding movement, as well as ultrastructural observations of two myxobacteria, suggest that the A-system motor may consist of multiple single motor elements that are arrayed along the entire cell body. Each motor element is proposed to be localized to the periplasmic space and to be anchored to the peptidoglycan layer. The force to glide which may be generated here is coupled to adhesion sites that move freely in the outer membrane. These adhesion sites provide a specific contact with the substratum. Based on single-cell observations, similar models have been proposed to operate in the unrelated gliding bacteria Flavobacterium johnsoniae (formerly Cytophaga johnsonae), Cytophaga strain U67, and Flexibacter polymorphus (a filamentous glider). Although this model has not been verified experimentally, M. xanthus seems to be the ideal organism with which to test it, given the genetic tools available. The second gliding motor in M. xanthus controls cell movement in groups (S-motility system). It is dependent on functional type IV pili and is operative only when cells are in close proximity to each other. Type IV pili are known to be involved in another mode of bacterial surface translocation, called twitching motility. S-motility may well represent a variation of twitching motility in M. xanthus. However, twitching differs from gliding since it involves cell movements that are jerky and abrupt and that lack the organization and smoothness observed in gliding. Components of this motor are encoded by genes of the S-system, which appear to be homologs of genes involved in the biosynthesis, assembly, and function of type IV pili in Pseudomonas aeruginosa and Neisseria gonorrhoeae. How type IV pili generate force in S-motility is currently unknown, but it is to be expected that ongoing physiological, genetic, and biochemical studies in M. xanthus, in conjunction with studies on twitching in P. aeruginosa and N. gonorrhoeae, will provide important insights into this microbial motor. The two motility systems of M. xanthus are affected to different degrees by the MglA protein, which shows similarity to a small GTPase. Bacterial chemotaxis-like sensory transduction systems control gliding motility in M. xanthus. The frz genes appear to regulate gliding movement of individual cells and movement by the S-motility system, suggesting that the two motors found in this bacterium can be regulated to result in coordinated multicellular movements. In contrast, the dif genes affect only S-system-dependent swarming.


2021 ◽  
Author(s):  
Sofya Kuzmich ◽  
Dorota Skotnicka ◽  
Dobromir Szadkowski ◽  
Philipp Klos ◽  
María Pérez‐Burgos ◽  
...  

In bacteria, the nucleotide-based second messenger bis-(3’-5’)-cyclic dimeric GMP (c-di-GMP) binds to effectors to generate outputs in response to changes in the environment. In Myxococcus xanthus, c-di-GMP regulates type IV pili-dependent motility and the starvation-induced developmental program that results in formation of spore-filled fruiting bodies; however, little is known about the effectors that bind c-di-GMP. Here, we systematically inactivated all 24 genes encoding PilZ domain-containing proteins, which are among the most common c-di-GMP effectors. We confirm that the stand-alone PilZ-domain protein PlpA is important for regulation of motility independently of the Frz chemosensory system, and that Pkn1, which is composed of a Ser/Thr kinase domain and a PilZ domain, is specifically important for development. Moreover, we identify two PilZ-domain proteins that have distinct functions in regulating motility and development. PixB, which is composed of two PilZ domains and an acetyltransferase domain, binds c-di-GMP in vitro and regulates type IV pili-dependent and gliding motility in a Frz-dependent manner as well as development. The acetyltransferase domain is required and sufficient for function during growth while all three domains and c-di-GMP binding are essential for PixB function during development. PixA is a response regulator composed of a PilZ domain and a receiver domain, binds c-di-GMP in vitro, and regulates motility independently of the Frz system likely by setting up the polarity of the two motility systems. Our results support a model whereby PlpA, PixA and PixB act in independent pathways and have distinct functions in regulation of motility. Importance c-di-GMP signaling controls bacterial motility in many bacterial species by binding to downstream effector proteins. Here, we identify two PilZ domain-containing proteins in Myxococcus xanthus that bind c-di-GMP. We show that PixB, which contains two PilZ domains and an acetyltransferase domain, acts in a manner that depends on the Frz chemosensory system to regulate motility via the acetyltransferase domain while the intact protein and c-di-GMP binding are essential for PixB to support development. By contrast, PixA acts acts in Frz-independent mannerto regulate motility. Together with previous observations, we conclude that PilZ-domain proteins and c-di-GMP act in multiple independent pathways to regulate motility and development in M. xanthus.


Sign in / Sign up

Export Citation Format

Share Document