scholarly journals Cyclic Di-GMP Binding by an Assembly ATPase (PilB2) and Control of Type IV Pilin Polymerization in the Gram-Positive Pathogen Clostridium perfringens

2017 ◽  
Vol 199 (10) ◽  
Author(s):  
William A. Hendrick ◽  
Mona W. Orr ◽  
Samantha R. Murray ◽  
Vincent T. Lee ◽  
Stephen B. Melville

ABSTRACT The Gram-positive pathogen Clostridium perfringens possesses type IV pili (TFP), which are extracellular fibers that are polymerized from a pool of pilin monomers in the cytoplasmic membrane. Two proteins that are essential for pilus functions are an assembly ATPase (PilB) and an inner membrane core protein (PilC). Two homologues each of PilB and PilC are present in C. perfringens, called PilB1/PilB2 and PilC1/PilC2, respectively, along with four pilin proteins, PilA1 to PilA4. The gene encoding PilA2, which is considered the major pilin based on previous studies, is immediately downstream of the pilB2 and pilC2 genes. Purified PilB2 had ATPase activity, bound zinc, formed hexamers even in the absence of ATP, and bound the second messenger molecule cyclic di-GMP (c-di-GMP). Circular dichroism spectroscopy of purified PilC2 indicated that it retained its predicted degree of alpha-helical secondary structure. Even though no direct interactions between PilB2 and PilC2 could be detected in vivo or in vitro even in the presence of c-di-GMP, high levels of expression of a diguanylate cyclase from C. perfringens (CPE1788) stimulated polymerization of PilA2 in a PilB2- and PilC2-dependent manner. These results suggest that PilB2 activity is controlled by c-di-GMP levels in vivo but that PilB2-PilC2 interactions are either transitory or of low affinity, in contrast to results reported previously from in vivo studies of the PilB1/PilC1 pair in which PilC1 was needed for polar localization of PilB1. This is the first biochemical characterization of a c-di-GMP-dependent assembly ATPase from a Gram-positive bacterium. IMPORTANCE Type IV pili (TFP) are protein fibers involved in important bacterial functions, including motility, adherence to surfaces and host cells, and natural transformation. All clostridia whose genomes have been sequenced show evidence of the presence of TFP. The genetically tractable species Clostridium perfringens was used to study proteins involved in polymerizing the pilin, PilA2, into a pilus. The assembly ATPase PilB2 and its cognate membrane protein partner, PilC2, were purified. PilB2 bound the intracellular signal molecule c-di-GMP. Increased levels of intracellular c-di-GMP led to increased polymerization of PilA2, indicating that Gram-positive bacteria use this molecule to regulate pilus synthesis. These findings provide valuable information for understanding how pathogenic clostridia regulate TFP to cause human diseases.

2019 ◽  
Vol 85 (6) ◽  
Author(s):  
Yi-Ywan M. Chen ◽  
Yi-Chien Chiang ◽  
Tzu-Ying Tseng ◽  
Hui-Yu Wu ◽  
Yueh-Ying Chen ◽  
...  

ABSTRACTStreptococcus sanguinis, dominant in the oral microbiome, is the only known streptococcal species possessing apilgene cluster for the biosynthesis of type IV pili (Tfp). Although this cluster is commonly present in the genome ofS. sanguinis, most of the strains do not express Tfp-mediated twitching motility. Thus, this study was designed to investigate the biological functions encoded by the cluster in the twitching-negative strainS. sanguinisSK36. We found that the cluster was transcribed as an operon, with three promoters located 5′ to the cluster and one in the intergenic region between SSA_2307 and SSA_2305. Studies using promoter-catfusion strains revealed that the transcription of the cluster was mainly driven by the distal 5′ promoter, which is located more than 800 bases 5′ to the first gene of the cluster, SSA_2318. Optimal expression of the cluster occurred at the early stationary growth phase in a CcpA-dependent manner, although a CcpA-binding consensus is absent in the promoter region. Expression of the cluster resulted in a short hairlike surface structure under transmission electron microscopy. Deletion of the putative pilin genes (SSA_2313 to SSA_2315) abolished the biosynthesis of this structure and significantly reduced the adherence of SK36 to HeLa and SCC-4 cells. Mutations in thepilgenes downregulated biofilm formation byS. sanguinisSK36. Taken together, the results demonstrate that Tfp of SK36 are important for host cell adherence, but not for motility, and that expression of thepilcluster is subject to complex regulation.IMPORTANCEThe proteins and assembly machinery of the type IV pili (Tfp) are conserved throughout bacteria and archaea, and yet the function of this surface structure differs from species to species and even from strain to strain. As seen inStreptococcus sanguinisSK36, the expression of the Tfp gene cluster results in a hairlike surface structure that is much shorter than the typical Tfp. This pilus is essential for the adherence of SK36 but is not involved in motility. Being a member of the highly diverse dental biofilm, perhapsS. sanguiniscould more effectively utilize this structure to adhere to host cells and to interact with other microbes within the same niche.


2010 ◽  
Vol 207 (8) ◽  
pp. 1713-1726 ◽  
Author(s):  
Christopher T.D. Price ◽  
Tasneem Al-Quadan ◽  
Marina Santic ◽  
Snake C. Jones ◽  
Yousef Abu Kwaik

Farnesylation involves covalent linkage of eukaryotic proteins to a lipid moiety to anchor them into membranes, which is essential for the biological function of Ras and other proteins. A large cadre of bacterial effectors is injected into host cells by intravacuolar pathogens through elaborate type III–VII translocation machineries, and many of these effectors are incorporated into the pathogen-containing vacuolar membrane by unknown mechanisms. The Dot/Icm type IV secretion system of Legionella pneumophila injects into host cells the F-box effector Ankyrin B (AnkB), which functions as platforms for the docking of polyubiquitinated proteins to the Legionella-containing vacuole (LCV) to enable intravacuolar proliferation in macrophages and amoeba. We show that farnesylation of AnkB is indispensable for its anchoring to the cytosolic face of the LCV membrane, for its biological function within macrophages and Dictyostelium discoideum, and for intrapulmonary proliferation in mice. Remarkably, the protein farnesyltransferase, RCE-1 (Ras-converting enzyme-1), and isoprenyl cysteine carboxyl methyltransferase host farnesylation enzymes are recruited to the LCV in a Dot/Icm-dependent manner and are essential for the biological function of AnkB. In conclusion, this study shows novel localized recruitment of the host farnesylation machinery and its anchoring of an F-box effector to the LCV membrane, and this is essential for biological function in vitro and in vivo.


2014 ◽  
Vol 82 (5) ◽  
pp. 1880-1890 ◽  
Author(s):  
Philippa J. Randall ◽  
Nai-Jen Hsu ◽  
Dirk Lang ◽  
Susan Cooper ◽  
Boipelo Sebesho ◽  
...  

ABSTRACTMycobacterium tuberculosisinfection of the central nervous system is thought to be initiated once the bacilli have breached the blood brain barrier and are phagocytosed, primarily by microglial cells. In this study, the interactions ofM. tuberculosiswith neuronsin vitroandin vivowere investigated. The data obtained demonstrate that neurons can act as host cells forM. tuberculosis.M. tuberculosisbacilli were internalized by murine neuronal cultured cells in a time-dependent manner after exposure, with superior uptake by HT22 cells compared to Neuro-2a cells (17.7% versus 9.8%). Internalization ofM. tuberculosisbacilli by human SK-N-SH cultured neurons suggested the clinical relevance of the findings. Moreover, primary murine hippocampus-derived neuronal cultures could similarly internalizeM. tuberculosis. InternalizedM. tuberculosisbacilli represented a productive infection with retention of bacterial viability and replicative potential, increasing 2- to 4-fold within 48 h.M. tuberculosisbacillus infection of neurons was confirmedin vivoin the brains of C57BL/6 mice after intracerebral challenge. This study, therefore, demonstrates neurons as potential new target cells forM. tuberculosiswithin the central nervous system.


2017 ◽  
Vol 199 (23) ◽  
Author(s):  
Brad K. Kern ◽  
Eric A. Porsch ◽  
Joseph W. St. Geme

ABSTRACT Kingella kingae is an important pathogen in young children and initiates infection by colonizing the posterior pharynx. Adherence to pharyngeal epithelial cells is an important first step in the process of colonization. In the present study, we sought to elucidate the interplay of type IV pili (T4P), a trimeric autotransporter adhesin called Knh, and the polysaccharide capsule in K. kingae adherence to host cells. Using adherence assays performed under shear stress, we observed that a strain expressing only Knh was capable of higher levels of adherence than a strain expressing only T4P. Using atomic force microscopy and transmission electron microscopy (TEM), we established that the capsule had a mean depth of 700 nm and that Knh was approximately 110 nm long. Using cationic ferritin capsule staining and thin-section transmission electron microscopy, we found that when bacteria expressing retractile T4P were in close contact with host cells, the capsule was absent at the point of contact between the bacterium and the host cell membrane. In a T4P retraction-deficient mutant, the capsule depth remained intact and adherence levels were markedly reduced. These results support the following model: T4P make initial contact with the host cell and mediate low-strength adherence. T4P retract, pulling the organism closer to the host cell and displacing the capsule, allowing Knh to be exposed and mediate high-strength, tight adherence to the host cell surface. This report provides the first description of the mechanical displacement of capsule enabling intimate bacterial adherence to host cells. IMPORTANCE Adherence to host cells is an important first step in bacterial colonization and pathogenicity. Kingella kingae has three surface factors that are involved in adherence: type IV pili (T4P), a trimeric autotransporter adhesin called Knh, and a polysaccharide capsule. Our results suggest that T4P mediate initial contact and low-strength adherence to host cells. T4P retraction draws the bacterium closer to the host cell and causes the displacement of capsule. This displacement exposes Knh and allows Knh to mediate high-strength adherence to the host cell. This work provides new insight into the interplay of T4P, a nonpilus adhesin, and a capsule and their effects on bacterial adherence to host cells.


2016 ◽  
Vol 84 (12) ◽  
pp. 3458-3470 ◽  
Author(s):  
Mike Khan ◽  
Jerome S. Harms ◽  
Fernanda M. Marim ◽  
Leah Armon ◽  
Cherisse L. Hall ◽  
...  

Brucella species are facultative intracellular bacteria that cause brucellosis, a chronic debilitating disease significantly impacting global health and prosperity. Much remains to be learned about how Brucella spp. succeed in sabotaging immune host cells and how Brucella spp. respond to environmental challenges. Multiple types of bacteria employ the prokaryotic second messenger cyclic di-GMP (c-di-GMP) to coordinate responses to shifting environments. To determine the role of c-di-GMP in Brucella physiology and in shaping host- Brucella interactions, we utilized c-di-GMP regulatory enzyme deletion mutants. Our results show that a Δ bpdA phosphodiesterase mutant producing excess c-di-GMP displays marked attenuation in vitro and in vivo during later infections. Although c-di-GMP is known to stimulate the innate sensor STING, surprisingly, the Δ bpdA mutant induced a weaker host immune response than did wild-type Brucella or the low-c-di-GMP guanylate cyclase Δ cgsB mutant. Proteomics analysis revealed that c-di-GMP regulates several processes critical for virulence, including cell wall and biofilm formation, nutrient acquisition, and the type IV secretion system. Finally, Δ bpdA mutants exhibited altered morphology and were hypersensitive to nutrient-limiting conditions. In summary, our results indicate a vital role for c-di-GMP in allowing Brucella to successfully navigate stressful and shifting environments to establish intracellular infection.


2011 ◽  
Vol 79 (8) ◽  
pp. 3096-3105 ◽  
Author(s):  
Katherine Rodgers ◽  
Cindy Grove Arvidson ◽  
Stephen Melville

ABSTRACTClostridium perfringensis an anaerobic, Gram-positive bacterium that causes a range of diseases in humans, including lethal gas gangrene. We have recently shown that strains ofC. perfringensmove across the surface of agar plates by a unique type IV pilus (TFP)-mediated social motility that had not been previously described. Based on sequence homology to pilins in Gram-negative bacteria,C. perfringensappears to have two pilin subunits, PilA1 and PilA2. Structural prediction analysis indicated PilA1 is similar to the pseudopilin found inKlebsiella oxytoca, while PilA2 is more similar to true pilins found in the Gram-negative pathogensPseudomonas aeruginosaandNeisseria gonorrhoeae. Strains ofN. gonorrhoeaethat were genetically deficient in the native pilin, PilE, but supplemented with inducible expression of PilA1 and PilA2 ofC. perfringenswere constructed. Genetic competence, wild-type twitching motility, and attachment to human urogenital epithelial cells were not restored by expression of either pilin. However, attachment to mouse and rat myoblast (muscle) cell lines was observed with theN. gonorrhoeaestrain expressing PilA2. Significantly, wild-typeC. perfringenscells adhered to mouse myoblasts under anaerobic conditions, and adherence was 10-fold lower in apilTmutant that lacked functional TFP. These findings implicateC. perfringensTFP in the ability ofC. perfringensto adhere to and move along muscle fibersin vivo, which may provide a therapeutic approach to limiting this rapidly spreading and highly lethal infection.


2016 ◽  
Vol 311 (5) ◽  
pp. G852-G858 ◽  
Author(s):  
Matthew G. Varga ◽  
M. Blanca Piazuelo ◽  
Judith Romero-Gallo ◽  
Alberto G. Delgado ◽  
Giovanni Suarez ◽  
...  

Helicobacter pylori ( H. pylori) induces chronic gastritis in humans, and infection can persist for decades. One H. pylori strain-specific constituent that augments disease risk is the cag pathogenicity island. The cag island encodes a type IV secretion system (T4SS) that translocates DNA into host cells. Toll-like receptor 9 (TLR9) is an innate immune receptor that detects hypo-methylated CpG DNA motifs. In this study, we sought to define the role of the H. pylori cag T4SS on TLR9-mediated responses in vivo. H. pylori strain PMSS1 or its cagE − mutant, which fails to assemble a T4SS, were used to infect wild-type or Tlr9 −/− C57BL/6 mice. PMSS1-infected Tlr9 −/− mice developed significantly higher levels of inflammation, despite similar levels of colonization density, compared with PMSS1-infected wild-type mice. These changes were cag dependent, as both mouse genotypes infected with the cagE − mutant only developed minimal inflammation. Tlr9 −/− genotypes did not alter the microbial phenotypes of in vivo-adapted H. pylori strains; therefore, we examined host immunological responses. There were no differences in levels of TH1 or TH2 cytokines in infected mice when stratified by host genotype. However, gastric mucosal levels of IL-17 were significantly increased in infected Tlr9 −/− mice compared with infected wild-type mice, and H. pylori infection of IL-17A −/− mice concordantly led to significantly decreased levels of gastritis. Thus loss of Tlr9 selectively augments the intensity of IL-17-driven immune responses to H. pylori in a cag T4SS-dependent manner. These results suggest that H. pylori utilizes the cag T4SS to manipulate the intensity of the host immune response.


2014 ◽  
Vol 111 (10) ◽  
pp. E953-E961 ◽  
Author(s):  
Katja Siewering ◽  
Samta Jain ◽  
Carmen Friedrich ◽  
Mariam T. Webber-Birungi ◽  
Dmitry A. Semchonok ◽  
...  

Type IV pili (T4P) are ubiquitous and versatile bacterial cell surface structures involved in adhesion to host cells, biofilm formation, motility, and DNA uptake. In Gram-negative bacteria, T4P pass the outer membrane (OM) through the large, oligomeric, ring-shaped secretin complex. In the β-proteobacteriumNeisseria gonorrhoeae, the native PilQ secretin ring embedded in OM sheets is surrounded by an additional peripheral structure, consisting of a peripheral ring and seven extending spikes. To unravel proteins important for formation of this additional structure, we identified proteins that are present with PilQ in the OM. One such protein, which we name T4P secretin-associated protein (TsaP), was identified as a phylogenetically widely conserved component of the secretin complex that co-occurs with genes for T4P in Gram-negative bacteria. TsaP contains an N-terminal carbohydrate-binding lysin motif (LysM) domain and a C-terminal domain of unknown function. InN. gonorrhoeae, lack of TsaP results in the formation of membrane protrusions containing multiple T4P, concomitant with reduced formation of surface-exposed T4P. Lack of TsaP did not affect the oligomeric state of PilQ, but resulted in loss of the peripheral structure around the PilQ secretin. TsaP binds peptidoglycan and associates strongly with the OM in a PilQ-dependent manner. In the δ-proteobacteriumMyxococcus xanthus, TsaP is also important for surface assembly of T4P, and it accumulates and localizes in a PilQ-dependent manner to the cell poles. Our results show that TsaP is a novel protein associated with T4P function and suggest that TsaP functions to anchor the secretin complex to the peptidoglycan.


2018 ◽  
Vol 86 (5) ◽  
Author(s):  
Robert W. McKee ◽  
Naira Aleksanyan ◽  
Elizabeth M. Garrett ◽  
Rita Tamayo

ABSTRACTCyclic diguanylate (c-di-GMP) is a second messenger that regulates the transition from motile to sessile lifestyles in numerous bacteria and controls virulence factor production in a variety of pathogens. InClostridium difficile, c-di-GMP negatively regulates flagellum biosynthesis and swimming motility and promotes the production of type IV pili (TFP), biofilm formation, and surface motilityin vitro. Flagella have been identified as colonization factors inC. difficile, but the role of TFP in adherence to host cells and in colonization of the mammalian gut is unknown. Here we show that c-di-GMP promotes adherence to epithelial cellsin vitro, which can be partly attributed to the loss of flagella. Using TFP-null mutants, we demonstrate that adherence to epithelial cells is partially mediated by TFP and that this TFP-mediated adherence requires c-di-GMP regulation. In a mouse model of colonization, the TFP-null mutants initially colonized the intestine as well as the parental strain but were cleared more quickly. Moreover, compared to the parent strain,C. difficilestrains lacking TFP were particularly deficient in association with the cecal mucosa. Together these data indicate that TFP and their positive regulation by c-di-GMP promote attachment ofC. difficileto the intestinal epithelium and contribute to persistence ofC. difficilein the host intestine.


mBio ◽  
2019 ◽  
Vol 10 (2) ◽  
Author(s):  
Joel D. Ernst ◽  
Amber Cornelius ◽  
Miriam Bolz

ABSTRACTSecretion of specific proteins contributes to pathogenesis and immune responses in tuberculosis and other bacterial infections, yet the kinetics of protein secretion and fate of secreted proteinsin vivoare poorly understood. We generated new monoclonal antibodies that recognize theMycobacteriumtuberculosissecreted protein Ag85B and used them to establish and characterize a sensitive enzyme-linked immunosorbent assay (ELISA) to quantitate Ag85B in samples generatedin vitroandin vivo. We found that nutritional or culture conditions had little impact on the secretion of Ag85B and that there is considerable variation in Ag85B secretion by distinct strains in theM. tuberculosiscomplex: compared with the commonly used H37Rv strain (lineage 4),Mycobacteriumafricanum(lineage 6) secretes less Ag85B, and two strains from lineage 2 secrete more Ag85B. We also used the ELISA to determine that the rate of secretion of Ag85B is 10- to 100-fold lower than that of proteins secreted by Gram-negative and Gram-positive bacteria, respectively. ELISA quantitation of Ag85B in lung homogenates ofM. tuberculosisH37Rv-infected mice revealed that although Ag85B accumulates in the lungs as the bacterial population expands, the amount of Ag85B per bacterium decreases nearly 10,000-fold at later stages of infection, coincident with the development of T cell responses and arrest of bacterial population growth. These results indicate that bacterial protein secretionin vivois dynamic and regulated, and quantitation of secreted bacterial proteins can contribute to the understanding of pathogenesis and immunity in tuberculosis and other infections.IMPORTANCEBacterial protein secretion contributes to host-pathogen interactions, yet the process and consequences of bacterial protein secretion during infection are poorly understood. We developed a sensitive ELISA to quantitate a protein (termed Ag85B) secreted byM. tuberculosisand used it to find that Ag85B secretion occurs with slower kinetics than for proteins secreted by Gram-positive and Gram-negative bacteria and that accumulation of Ag85B in the lungs is markedly regulated as a function of the bacterial population density. Our results demonstrate that quantitation of bacterial proteins during infection can reveal novel insights into host-pathogen interactions.


Sign in / Sign up

Export Citation Format

Share Document