scholarly journals Aspergillus nidulans transcription factor AtfA interacts with the MAPK SakA to regulate general stress responses, development and spore functions

2011 ◽  
Vol 80 (2) ◽  
pp. 436-454 ◽  
Author(s):  
Fernando Lara-Rojas ◽  
Olivia Sánchez ◽  
Laura Kawasaki ◽  
Jesús Aguirre
2010 ◽  
Vol 283 (3) ◽  
pp. 289-303 ◽  
Author(s):  
Anita Balázs ◽  
Imre Pócsi ◽  
Zsuzsanna Hamari ◽  
Éva Leiter ◽  
Tamás Emri ◽  
...  

2021 ◽  
Vol 9 (1) ◽  
pp. 144
Author(s):  
Sung-Hun Son ◽  
Mi-Kyung Lee ◽  
Ye-Eun Son ◽  
Hee-Soo Park

Homeobox transcription factors are conserved in eukaryotes and act as multi-functional transcription factors in filamentous fungi. Previously, it was demonstrated that HbxB governs fungal development and spore viability in Aspergillus nidulans. Here, the role of HbxB in A. nidulans was further characterized. RNA-sequencing revealed that HbxB affects the transcriptomic levels of genes associated with trehalose biosynthesis and response to thermal, oxidative, and radiation stresses in asexual spores called conidia. A phenotypic analysis found that hbxB deletion mutant conidia were more sensitive to ultraviolet stress. The loss of hbxB increased the mRNA expression of genes associated with β-glucan degradation and decreased the amount of β-glucan in conidia. In addition, hbxB deletion affected the expression of the sterigmatocystin gene cluster and the amount of sterigmatocystin. Overall, these results indicated that HbxB is a key transcription factor regulating trehalose biosynthesis, stress tolerance, β-glucan degradation, and sterigmatocystin production in A.nidulans conidia.


1999 ◽  
Vol 19 (11) ◽  
pp. 7589-7599 ◽  
Author(s):  
Mariano Ubeda ◽  
Mario Vallejo ◽  
Joel F. Habener

ABSTRACT The transcription factor CHOP (C/EBP homologous protein 10) is a bZIP protein induced by a variety of stimuli that evoke cellular stress responses and has been shown to arrest cell growth and to promote programmed cell death. CHOP cannot form homodimers but forms stable heterodimers with the C/EBP family of activating transcription factors. Although initially characterized as a dominant negative inhibitor of C/EBPs in the activation of gene transcription, CHOP-C/EBP can activate certain target genes. Here we show that CHOP interacts with members of the immediate-early response, growth-promoting AP-1 transcription factor family, JunD, c-Jun, and c-Fos, to activate promoter elements in the somatostatin, JunD, and collagenase genes. The leucine zipper dimerization domain is required for interactions with AP-1 proteins and transactivation of transcription. Analyses by electrophoretic mobility shift assays and by an in vivo mammalian two-hybrid system for protein-protein interactions indicate that CHOP interacts with AP-1 proteins inside cells and suggest that it is recruited to the AP-1 complex by a tethering mechanism rather than by direct binding of DNA. Thus, CHOP not only is a negative or a positive regulator of C/EBP target genes but also, when tethered to AP-1 factors, can activate AP-1 target genes. These findings establish the existence of a new mechanism by which CHOP regulates gene expression when cells are exposed to cellular stress.


Cell ◽  
2020 ◽  
Vol 182 (2) ◽  
pp. 404-416.e14 ◽  
Author(s):  
Colin Chih-Chien Wu ◽  
Amy Peterson ◽  
Boris Zinshteyn ◽  
Sergi Regot ◽  
Rachel Green

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Lise Friis Christensen ◽  
Lasse Staby ◽  
Katrine Bugge ◽  
Charlotte O’Shea ◽  
Birthe B. Kragelund ◽  
...  

AbstractRadical-Induced Cell Death1 (RCD1) functions as a cellular hub interacting with intrinsically disordered transcription factor regions, which lack a well-defined three-dimensional structure, to regulate plant stress. Here, we address the molecular evolution of the RCD1-interactome. Using bioinformatics, its history was traced back more than 480 million years to the emergence of land plants with the RCD1-binding short linear motif (SLiM) identified from mosses to flowering plants. SLiM variants were biophysically verified to be functional and to depend on the same RCD1 residues as the DREB2A transcription factor. Based on this, numerous additional members may be assigned to the RCD1-interactome. Conservation was further strengthened by similar intrinsic disorder profiles of the transcription factor homologs. The unique structural plasticity of the RCD1-interactome, with RCD1-binding induced α-helix formation in DREB2A, but not detectable in ANAC046 or ANAC013, is apparently conserved. Thermodynamic analysis also indicated conservation with interchangeability between Arabidopsis and soybean RCD1 and DREB2A, although with fine-tuned co-evolved binding interfaces. Interruption of conservation was observed, as moss DREB2 lacked the SLiM, likely reflecting differences in plant stress responses. This whole-interactome study uncovers principles of the evolution of SLiM:hub-interactions, such as conservation of α-helix propensities, which may be paradigmatic for disorder-based interactomes in eukaryotes.


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 1459
Author(s):  
Shalem Raju Modi ◽  
Tarja Kokkola

GR24 is a synthetic strigolactone analog, demonstrated to regulate the development of plants and arbuscular mycorrhizal fungi. GR24 possesses anti-cancer and anti-apoptotic properties, enhances insulin sensitivity and mitochondrial biogenesis in skeletal myotubes, inhibits adipogenesis, decreases inflammation in adipocytes and macrophages and downregulates the expression of hepatic gluconeogenic enzymes. Transcription factor Nrf2 (Nuclear factor (erythroid-derived 2)-like 2) is a master regulator of antioxidant response, regulating a multitude of genes involved in cellular stress responses and anti-inflammatory pathways, thus maintaining cellular redox homeostasis. Nrf2 activation reduces the deleterious effects of mitochondrial toxins and has multiple roles in promoting mitochondrial function and dynamics. We studied the role of GR24 on gene expression in rat L6 skeletal muscle cells which were differentiated into myotubes. The myotubes were treated with GR24 and analyzed by microarray gene expression profiling. GR24 upregulated the cytoprotective transcription factor Nrf2 and its target genes, activating antioxidant defences, suggesting that GR24 may protect skeletal muscle from the toxic effects of oxidative stress.


Sign in / Sign up

Export Citation Format

Share Document