MicroRNA-23b promotes tolerogenic properties of dendritic cells in vitro through inhibiting Notch1/NF-κB signalling pathways

Allergy ◽  
2012 ◽  
Vol 67 (3) ◽  
pp. 362-370 ◽  
Author(s):  
J. Zheng ◽  
H.-Y. Jiang ◽  
J. Li ◽  
H.-C. Tang ◽  
X.-M. Zhang ◽  
...  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Marisa Nacke ◽  
Emma Sandilands ◽  
Konstantina Nikolatou ◽  
Álvaro Román-Fernández ◽  
Susan Mason ◽  
...  

AbstractThe signalling pathways underpinning cell growth and invasion use overlapping components, yet how mutually exclusive cellular responses occur is unclear. Here, we report development of 3-Dimensional culture analyses to separately quantify growth and invasion. We identify that alternate variants of IQSEC1, an ARF GTPase Exchange Factor, act as switches to promote invasion over growth by controlling phosphoinositide metabolism. All IQSEC1 variants activate ARF5- and ARF6-dependent PIP5-kinase to promote PI(3,4,5)P3-AKT signalling and growth. In contrast, select pro-invasive IQSEC1 variants promote PI(3,4,5)P3 production to form invasion-driving protrusions. Inhibition of IQSEC1 attenuates invasion in vitro and metastasis in vivo. Induction of pro-invasive IQSEC1 variants and elevated IQSEC1 expression occurs in a number of tumour types and is associated with higher-grade metastatic cancer, activation of PI(3,4,5)P3 signalling, and predicts long-term poor outcome across multiple cancers. IQSEC1-regulated phosphoinositide metabolism therefore is a switch to induce invasion over growth in response to the same external signal. Targeting IQSEC1 as the central regulator of this switch may represent a therapeutic vulnerability to stop metastasis.


Cancers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 3818
Author(s):  
Maud Plantinga ◽  
Denise A. M. H. van den Beemt ◽  
Ester Dünnebach ◽  
Stefan Nierkens

Induction of long-lasting immunity by dendritic cells (DCs) makes them attractive candidates for anti-tumor vaccination. Although DC vaccinations are generally considered safe, clinical responses remain inconsistent in clinical trials. This initiated studies to identify subsets of DCs with superior capabilities to induce effective and memory anti-tumor responses. The use of primary DCs has been suggested to overcome the functional limitations of ex vivo monocyte-derived DCs (moDC). The ontogeny of primary DCs has recently been revised by the introduction of DC3, which phenotypically resembles conventional (c)DC2 as well as moDC. Previously, we developed a protocol to generate cDC2s from cord blood (CB)-derived stem cells via a CD115-expressing precursor. Here, we performed index sorting and single-cell RNA-sequencing to define the heterogeneity of in vitro developed DC precursors and identified CD14+CD115+ expressing cells that develop into CD1c++DCs and the remainder cells brought about CD123+DCs, as well as assessed their potency. The maturation status and T-cell activation potential were assessed using flow cytometry. CD123+DCs were specifically prone to take up antigens but only modestly activated T-cells. In contrast, CD1c++ are highly mature and specialized in both naïve as well as antigen-experienced T-cell activation. These findings show in vitro functional diversity between cord blood stem cell-derived CD123+DC and CD1c++DCs and may advance the efficiency of DC-based vaccines.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lea Miebach ◽  
Eric Freund ◽  
Stefan Horn ◽  
Felix Niessner ◽  
Sanjeev Kumar Sagwal ◽  
...  

AbstractRecent research indicated the potential of cold physical plasma in cancer therapy. The plethora of plasma-derived reactive oxygen and nitrogen species (ROS/RNS) mediate diverse antitumor effects after eliciting oxidative stress in cancer cells. We aimed at exploiting this principle using a newly designed dual-jet neon plasma source (Vjet) to treat colorectal cancer cells. A treatment time-dependent ROS/RNS generation induced oxidation, growth retardation, and cell death within 3D tumor spheroids were found. In TUM-CAM, a semi in vivo model, the Vjet markedly reduced vascularized tumors' growth, but an increase of tumor cell immunogenicity or uptake by dendritic cells was not observed. By comparison, the argon-driven single jet kINPen, known to mediate anticancer effects in vitro, in vivo, and in patients, generated less ROS/RNS and terminal cell death in spheroids. In the TUM-CAM model, however, the kINPen was equivalently effective and induced a stronger expression of immunogenic cancer cell death (ICD) markers, leading to increased phagocytosis of kINPen but not Vjet plasma-treated tumor cells by dendritic cells. Moreover, the Vjet was characterized according to the requirements of the DIN-SPEC 91315. Our results highlight the plasma device-specific action on cancer cells for evaluating optimal discharges for plasma cancer treatment.


2015 ◽  
pp. 323 ◽  
Author(s):  
Phuc Pham ◽  
Sinh Nguyen ◽  
Viet Pham ◽  
Ngoc Phan ◽  
Huyen Nguyen ◽  
...  

2008 ◽  
Vol 180 (3) ◽  
pp. 1462-1470 ◽  
Author(s):  
Claudia Papewalis ◽  
Benedikt Jacobs ◽  
Margret Wuttke ◽  
Evelyn Ullrich ◽  
Thomas Baehring ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document