Effect of Abscisic Acid and Other Plant Hormones on Growth of Apical and Lateral Buds of Seedlings

1974 ◽  
Vol 32 (4) ◽  
pp. 369-372 ◽  
Author(s):  
DEISE MAURI BELLANDI ◽  
KARL DORFFLING
2021 ◽  
Author(s):  
Jiajia Li ◽  
Dongmei Li ◽  
Boyang Liu ◽  
Ruiqi Wang ◽  
Yixuan Yan ◽  
...  

Abstract Endogenous plant hormones play important roles in germination, blossom, senescence, abscission of plants by a series of signal transduction and molecular regulation. The purpose of this research was to investigate the influence of root restriction (RR) cultivation on plant hormones variation tendency at different growth stages in diverse organs or tissues, ‘Muscat Hamburg’ (Vitis ‘Muscat of Alexandria’ × Vitis ‘Trollinger’) grapevine was used as test material. High Performance Liquid Chromatography (HPLC) was used to quantify hormone levels, aiming to investigate the influence of root restriction on the formation and transportation of plant hormones. The results revealed that RR treatment increased abscisic acid, salicylic acid, zeatin riboside, N6-(delta 2-isopentenyl)-adenine nucleoside concentrations, while reduced auxin, 3-indolepropionic acid, 3-indolebutyric acid, gibberellin A3, zeatin, N6-(delta 2-Isopentenyl)-adenine, kinetin, jasmonic acid and methyl jasmonate concentrations. To sum up, our results suggested that RR treatment could initiate stress responses via up-regulating abscisic acid and salicylic acid contents while down-regulating auxin and kinetin contents, resulting in the changes of fruit appearance and improvement of berry quality.


Biomolecules ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 26 ◽  
Author(s):  
Young Yoon ◽  
Minjae Kim ◽  
Woong Park

Plants absorb melatonin from the environments as well as they synthesize the regulatory molecule. We applied melatonin to the roots of maize (Zea mays) seedlings and examined its accumulation in the leaves. Melatonin accumulation in the leaves was proportional to the exogenously applied concentrations up to 5 mM, without saturation. Time-course analysis of the accumulated melatonin content did not show an adaptable (or desensitizable) uptake system over a 24-h period. Melatonin accumulation in the leaves was reduced significantly by the plant hormones abscisic acid (ABA) and salicylic acid (SA), which commonly cause stomatal closure. The application of ABA and benzo-18-crown-6 (18-CR, a stomata-closing agent) induced stomatal closure and simultaneously decreased melatonin content in the leaves. When plants were shielded from airflow in the growth chamber, melatonin accumulation in the leaves decreased, indicating the influence of reduced transpiration. We conclude that melatonin applied exogenously to the root system is absorbed, mobilized upward according to the transpirational flow, and finally accumulated in the leaves.


HortScience ◽  
2001 ◽  
Vol 36 (7) ◽  
pp. 1329-1333 ◽  
Author(s):  
Yongjian Chang ◽  
Barbara M. Reed

Cold hardiness and cryogenic survival of micropropagated pear (Pyrus cordata Desv.) shoots were evaluated after pretreatments with ABA and sucrose. Shoot cold hardiness increased by 3 °C, and cryopreserved shoot tip growth increased by 17% after a 4-week 150 μm ABA pretreatment. Low temperature (LT) pretreatments improved the recovery of cryopreserved P. cordata shoot tips. Six to 10 weeks of LT were required for reaching high cryopreservation recovery. ABA and LT treatments produced significant synergistic effects on both cold hardiness and cryopreservation recovery. ABA shortened the LT requirement for high cryopreservation growth from 10 to 2 weeks. The optimal treatment for recovery of cryopreserved shoot tips was a 3 week culture on 50 μm ABA followed by 2 weeks of LT, while the maximum cold hardiness (-22.5 °C) was obtained with 150 μm ABA and 2-week LT. A 4 week culture on 150 μm ABA at 25 °C induced dormancy in 74% of shoot tips, but had little effect on cryopreservation growth unless combined with LT. Control and ABA-treated shoot tips, lateral buds, and leaves had similar cold hardiness (-10 to -12 °C), but LT and LT+ABA-treated shoot tips survived the lowest temperatures (-17 to -23 °C), lateral buds next (-15 to -20 °C), and finally leaves (-14 to -18 °C). An increase in the preculture-medium sucrose concentration from 2% to 7% combined with 2-week LT significantly increased cryopreserved shoot tip growth (0% to 75%) and decreased the LT50 from -7.8 to -12.4 °C. The optimal shoot pretreatment for successful recovery of cryopreserved P. cordata shoot tips was a 3 week culture on either 50 μm ABA or 5% to 7% sucrose medium followed by 2 weeks of LT, and increased shoot tip growth from zero to >70%. Chemical name used: abscisic acid (ABA).


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2457
Author(s):  
Yao Wang ◽  
Min Zhang ◽  
Shuai Dong ◽  
Yi-Ling Liu ◽  
Zhen-Hua Li

Light is one of the important environmental factors for seeds to evaluate whether the natural environment is appropriate for germination and subsequent seedlings emergence. The mechanism of light-mediated germination is mainly concerned with fresh seeds (FS) of model plants but is poorly understood in aged seeds. Here, the effects of light on germination of FS and naturally aged seeds (NAS) in tobacco and their relationship with plant hormones gibberellins (GA) and abscisic acid (ABA) were investigated. The results demonstrated that light promoted and inhibited the germination of FS and NAS, respectively. GA and ABA were involved in the germination control of NAS, as well as in FS. However, light suppressed GA signal and stimulated ABA signal in NAS, whereas it stimulated GA signal and suppressed ABA signal in FS. In addition, light stimulated the GA accumulation and reduction in ABA in FS while inhibiting the increase in GA level in NAS. Together, the present study demonstrates that light has opposite effects on the germination of FS and NAS, which are closely related to the metabolism and/or signaling of plant hormones ABA and GA.


Sign in / Sign up

Export Citation Format

Share Document