scholarly journals Effect of Abscisic Acid and Its Interactions with Other Plant Hormones on Ethylene Production in Two Plant Systems

1972 ◽  
Vol 50 (1) ◽  
pp. 194-195 ◽  
Author(s):  
Eitan Gertman ◽  
Yoram Fuchs
2021 ◽  
Author(s):  
Jiajia Li ◽  
Dongmei Li ◽  
Boyang Liu ◽  
Ruiqi Wang ◽  
Yixuan Yan ◽  
...  

Abstract Endogenous plant hormones play important roles in germination, blossom, senescence, abscission of plants by a series of signal transduction and molecular regulation. The purpose of this research was to investigate the influence of root restriction (RR) cultivation on plant hormones variation tendency at different growth stages in diverse organs or tissues, ‘Muscat Hamburg’ (Vitis ‘Muscat of Alexandria’ × Vitis ‘Trollinger’) grapevine was used as test material. High Performance Liquid Chromatography (HPLC) was used to quantify hormone levels, aiming to investigate the influence of root restriction on the formation and transportation of plant hormones. The results revealed that RR treatment increased abscisic acid, salicylic acid, zeatin riboside, N6-(delta 2-isopentenyl)-adenine nucleoside concentrations, while reduced auxin, 3-indolepropionic acid, 3-indolebutyric acid, gibberellin A3, zeatin, N6-(delta 2-Isopentenyl)-adenine, kinetin, jasmonic acid and methyl jasmonate concentrations. To sum up, our results suggested that RR treatment could initiate stress responses via up-regulating abscisic acid and salicylic acid contents while down-regulating auxin and kinetin contents, resulting in the changes of fruit appearance and improvement of berry quality.


Biomolecules ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 26 ◽  
Author(s):  
Young Yoon ◽  
Minjae Kim ◽  
Woong Park

Plants absorb melatonin from the environments as well as they synthesize the regulatory molecule. We applied melatonin to the roots of maize (Zea mays) seedlings and examined its accumulation in the leaves. Melatonin accumulation in the leaves was proportional to the exogenously applied concentrations up to 5 mM, without saturation. Time-course analysis of the accumulated melatonin content did not show an adaptable (or desensitizable) uptake system over a 24-h period. Melatonin accumulation in the leaves was reduced significantly by the plant hormones abscisic acid (ABA) and salicylic acid (SA), which commonly cause stomatal closure. The application of ABA and benzo-18-crown-6 (18-CR, a stomata-closing agent) induced stomatal closure and simultaneously decreased melatonin content in the leaves. When plants were shielded from airflow in the growth chamber, melatonin accumulation in the leaves decreased, indicating the influence of reduced transpiration. We conclude that melatonin applied exogenously to the root system is absorbed, mobilized upward according to the transpirational flow, and finally accumulated in the leaves.


2003 ◽  
Vol 1 (1) ◽  
pp. 59 ◽  
Author(s):  
V. Arbona Mengual ◽  
M.L. Foó Serra ◽  
P. Escrig Marín ◽  
A.J. Marco Casanova ◽  
J.A. Jacas Miret ◽  
...  

Citrus yield and growth are deeply affected by salinity. In the present work we have studied the effectiveness of differentplant growth regulators such as abscisic acid, jasmonic acid and 8’-methylene methyl abscissate in protectingcitrus from salt-induced damage. Plants of Salustiana cultivar grafted onto Carrizo citrange were used for this purpose.Plants were watered with 100 mM NaCl and leaf abscission, ethylene production, chloride accumulation and net photosyntheticrate were measured. Non-treated plants showed a dramatic drop in photosynthetic activity in response tosalinity, an increase in leaf ethylene production and a high abscission rate as a result of a massive leaf chloride accumulation.Plants treated with jasmonic acid or 8’-methylene methyl abscisate did not show any physiological changein response to salt stress. However, plants treated with abscisic acid showed a high reduction in the parameters considered.These results suggest that abscisic acid plays a role in modifying citrus physiological behaviour in responseto salinity and could be helpful in their acclimation to saline conditions


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2457
Author(s):  
Yao Wang ◽  
Min Zhang ◽  
Shuai Dong ◽  
Yi-Ling Liu ◽  
Zhen-Hua Li

Light is one of the important environmental factors for seeds to evaluate whether the natural environment is appropriate for germination and subsequent seedlings emergence. The mechanism of light-mediated germination is mainly concerned with fresh seeds (FS) of model plants but is poorly understood in aged seeds. Here, the effects of light on germination of FS and naturally aged seeds (NAS) in tobacco and their relationship with plant hormones gibberellins (GA) and abscisic acid (ABA) were investigated. The results demonstrated that light promoted and inhibited the germination of FS and NAS, respectively. GA and ABA were involved in the germination control of NAS, as well as in FS. However, light suppressed GA signal and stimulated ABA signal in NAS, whereas it stimulated GA signal and suppressed ABA signal in FS. In addition, light stimulated the GA accumulation and reduction in ABA in FS while inhibiting the increase in GA level in NAS. Together, the present study demonstrates that light has opposite effects on the germination of FS and NAS, which are closely related to the metabolism and/or signaling of plant hormones ABA and GA.


1976 ◽  
Vol 3 (4) ◽  
pp. 555 ◽  
Author(s):  
I Adato ◽  
S Gazit ◽  
A Blumenfeld

Abscisic acid levels and the rates of ethylene production during successive stages of ripening in avocado fruits (Persea americana Mill.) were determined by gas chromatography. In fruits which were selected for abscisic acid determination according to their rate of ethylene production, a rise in free abscisic acid content was observed following an increase in the rate of ethylene production. Levels of bound abscisic acid were much lower and increased later than free abscisic acid.


Sign in / Sign up

Export Citation Format

Share Document