Free messenger ribonucleoprotein complexes of chicken primary muscle cells following modification of protein synthesis by heat-shock treatment

1983 ◽  
Vol 135 (2) ◽  
pp. 187-196 ◽  
Author(s):  
Jnanankur BAG
1988 ◽  
Vol 106 (4) ◽  
pp. 1105-1116 ◽  
Author(s):  
L A Mizzen ◽  
W J Welch

Exposure of mammalian cells to a nonlethal heat-shock treatment, followed by a recovery period at 37 degrees C, results in increased cell survival after a subsequent and otherwise lethal heat-shock treatment. Here we characterize this phenomenon, termed acquired thermotolerance, at the level of translation. In a number of different mammalian cell lines given a severe 45 degrees C/30-min shock and then returned to 37 degrees C, protein synthesis was completely inhibited for as long as 5 h. Upon resumption of translational activity, there was a marked induction of heat-shock (or stress) protein synthesis, which continued for several hours. In contrast, cells first made thermotolerant (by a pretreatment consisting of a 43 degrees C/1.5-h shock and further recovery at 37 degrees C) and then presented with the 45 degrees C/30-min shock exhibited considerably less translational inhibition and an overall reduction in the amount of subsequent stress protein synthesis. The acquisition and duration of such "translational tolerance" was correlated with the expression, accumulation, and relative half-lives of the major stress proteins of 72 and 73 kD. Other agents that induce the synthesis of the stress proteins, such as sodium arsenite, similarly resulted in the acquisition of translational tolerance. The probable role of the stress proteins in the acquisition of translational tolerance was further indicated by the inability of the amino acid analogue, L-azetidine 2-carboxylic acid, an inducer of nonfunctional stress proteins, to render cells translationally tolerant. If, however, analogue-treated cells were allowed to recover in normal medium, and hence produce functional stress proteins, full translational tolerance was observed. Finally, we present data indicating that the 72- and 73-kD stress proteins, in contrast to the other major stress proteins (of 110, 90, and 28 kD), are subject to strict regulation in the stressed cell. Quantitation of 72- and 73-kD synthesis after heat-shock treatment under a number of conditions revealed that "titration" of 72/73-kD synthesis in response to stress may represent a mechanism by which the cell monitors its local growth environment.


1988 ◽  
Vol 8 (6) ◽  
pp. 2504-2512 ◽  
Author(s):  
B Lüscher ◽  
R N Eisenman

The proteins encoded by both viral and cellular forms of the c-myc oncogene have been previously demonstrated to have exceptionally short in vivo half-lives. In this paper we report a comparative study on the parameters affecting turnover of nuclear oncoproteins c-myc, c-myb, and the rapidly metabolized cytoplasmic enzyme ornithine decarboxylase. The degradation of all three proteins required metabolic energy, did not result in production of cleavage intermediates, and did not involve lysosomes or ubiquitin. A five- to eightfold increase in the half-life of c-myc proteins, and a twofold increase in the half-life of c-myb proteins was detected after heat-shock treatment at 46 degrees C. In contrast, heat shock had no effect on the turnover of ornithine decarboxylase. Heat shock also had the effect of increasing the rate of c-myc protein synthesis twofold, whereas c-myb protein synthesis was decreased nearly fourfold. The increased stability and synthesis of c-myc proteins led to an overall increase in the total level of c-myc proteins in response to heat-shock treatment. Furthermore, treatments which reduced c-myc and c-myb protein turnover, such as heat shock and exposure to inhibitors of metabolic energy production, resulted in reduced detergent solubility of both proteins. The recovery from heat shock, as measured by increased turnover and solubility, was energy dependent and considerably more rapid in thermotolerant cells.


1988 ◽  
Vol 106 (4) ◽  
pp. 1117-1130 ◽  
Author(s):  
W J Welch ◽  
L A Mizzen

Here we further characterize a number of properties inherent to the thermotolerant cell. In the preceding paper, we showed that the acquisition of the thermotolerant state (by a prior induction of the heat-shock proteins) renders cells translationally tolerant to a subsequent severe heat-shock treatment and thereby results in faster kinetics of both the synthesis and subsequent repression of the stress proteins. Because of the apparent integral role of the 70-kD stress proteins in the acquisition of tolerance, we compared the intracellular distribution of these proteins in both tolerant and nontolerant cells before and after a severe 45 degrees C/30-min shock. In both HeLa and rat embryo fibroblasts, the synthesis and migration of the major stress-induced 72-kD protein into the nucleolus and its subsequent exit was markedly faster in the tolerant cells as compared with the nontolerant cells. Migration of preexisting 72-kD into the nucleolus was shown to be dependent upon heat-shock treatment and independent of active heat-shock protein synthesis. Using both microinjection and immunological techniques, we observed that the constitutive and abundant 73-kD stress protein similarly showed a redistribution from the cytoplasm and nucleus into the nucleolus as a function of heat-shock treatment. We show also that other lesions that occur in cells after heat shock can be prevented or at least minimized if the cells are first made tolerant. Specifically, the heat-induced collapse of the intermediate filament cytoskeleton did not occur in cells rendered thermotolerant. Similarly, the disruption of intranuclear staining patterns of the small nuclear ribonucleoprotein complexes after heat-shock treatment was less apparent in tolerant cells exposed to a subsequent heat-shock treatment.


2010 ◽  
Vol 98 (3) ◽  
pp. 153a
Author(s):  
Todd Hall ◽  
Chad Touchberry ◽  
Robin Craig ◽  
Leticia Brotto ◽  
Michael Loghry ◽  
...  

1988 ◽  
Vol 8 (6) ◽  
pp. 2504-2512
Author(s):  
B Lüscher ◽  
R N Eisenman

The proteins encoded by both viral and cellular forms of the c-myc oncogene have been previously demonstrated to have exceptionally short in vivo half-lives. In this paper we report a comparative study on the parameters affecting turnover of nuclear oncoproteins c-myc, c-myb, and the rapidly metabolized cytoplasmic enzyme ornithine decarboxylase. The degradation of all three proteins required metabolic energy, did not result in production of cleavage intermediates, and did not involve lysosomes or ubiquitin. A five- to eightfold increase in the half-life of c-myc proteins, and a twofold increase in the half-life of c-myb proteins was detected after heat-shock treatment at 46 degrees C. In contrast, heat shock had no effect on the turnover of ornithine decarboxylase. Heat shock also had the effect of increasing the rate of c-myc protein synthesis twofold, whereas c-myb protein synthesis was decreased nearly fourfold. The increased stability and synthesis of c-myc proteins led to an overall increase in the total level of c-myc proteins in response to heat-shock treatment. Furthermore, treatments which reduced c-myc and c-myb protein turnover, such as heat shock and exposure to inhibitors of metabolic energy production, resulted in reduced detergent solubility of both proteins. The recovery from heat shock, as measured by increased turnover and solubility, was energy dependent and considerably more rapid in thermotolerant cells.


Zygote ◽  
2021 ◽  
pp. 1-5
Author(s):  
Nivaldo Ferreira do Nascimento ◽  
Rafaela Manchin Bertolini ◽  
Lucia Soares Lopez ◽  
Laura Satiko Okada Nakaghi ◽  
Paulo Sérgio Monzani ◽  
...  

Summary Triploidization plays an important role in aquaculture and surrogate technologies. In this study, we induced triploidy in the matrinxã fish (Brycon amazonicus) using a heat-shock technique. Embryos at 2 min post fertilization (mpf) were heat shocked at 38°C, 40°C, or 42°C for 2 min. Untreated, intact embryos were used as a control. Survival rates during early development were monitored and ploidy status was confirmed using flow cytometry and nuclear diameter analysis of erythrocytes. The hatching rate reduced with heat-shock treatment, and heat-shock treatments at 42°C resulted in no hatching events. Optimal results were obtained at 40°C with 95% of larvae exhibiting triploidy. Therefore, we report that heat-shock treatments of embryos (2 mpf) at 40°C for 2 min is an effective way to induce triploid individuals in B. amazonicus.


1986 ◽  
Vol 6 (1) ◽  
pp. 90-96 ◽  
Author(s):  
T McClanahan ◽  
K McEntee

Two Saccharomyces cerevisiae genes isolated in a differential hybridization screening for DNA damage regulation (DDR genes) were also transcriptionally regulated by heat shock treatment. A 0.45-kilobase transcript homologous to the DDRA2 gene and a 1.25-kilobase transcript homologous to the DDR48 gene accumulated after exposure of cells to 4-nitroquinoline-1-oxide (NQO; 1 to 1.5 microgram/ml) or brief heat shock (20 min at 37 degrees C). The DDRA2 transcript, which was undetectable in untreated cells, was induced to high levels by these treatments, and the DDR48 transcript increased more than 10-fold as demonstrated by Northern hybridization analysis. Two findings argue that dual regulation of stress-responsive genes is not common in S. cerevisiae. First, two members of the heat shock-inducible hsp70 family of S. cerevisiae, YG100 and YG102, were not induced by exposure to NQO. Second, at least one other DNA-damage-inducible gene, DIN1, was not regulated by heat shock treatment. We examined the structure of the induced RNA homologous to DDRA2 after heat shock and NQO treatments by S1 nuclease protection experiments. Our results demonstrated that the DDRA2 transcript initiates equally frequently at two sites separated by 5 base pairs. Both transcriptional start sites were utilized when cells were exposed to either NQO or heat shock treatment. These results indicate that DDRA2 and DDR48 are members of a unique dually regulated stress-responsive family of genes in S. cerevisiae.


Sign in / Sign up

Export Citation Format

Share Document