scholarly journals Salt Tolerance is Associated with Differences in Ion Accumulation, Biomass Allocation and Photosynthesis in Cowpea Cultivars

2009 ◽  
Vol 196 (3) ◽  
pp. 193-204 ◽  
Author(s):  
S. C. Praxedes ◽  
C. F. De Lacerda ◽  
F. M. DaMatta ◽  
J. T. Prisco ◽  
E. Gomes-Filho
2021 ◽  
Vol 12 ◽  
Author(s):  
Wei Liu ◽  
Junping Feng ◽  
Wenyu Ma ◽  
Yang Zhou ◽  
Zongbin Ma

Soil and freshwater salinization is increasingly becoming a problem worldwide and has adversely affected plant growth. However, most of the related studies have focused on sodium ion (Na+) stress, with relatively little research on chloride ion (Cl–) stress. Here, we found that upland cotton (Gossypium hirsutum) plants accumulated Cl– and exhibited strong growth inhibition under NaCl or KCl treatment. Then, a chloride channel gene (GhCLCg-1) was cloned from upland cotton. Phylogenetic and sequence analyses indicated that GhCLCg-1 was highly homologous to AtCLCg and also have conserved voltage_CLC and CBS domains. The subcellular localization assay showed that GhCLCg-1 was localized on the vacuolar membrane. Gene expression analyses revealed that the expression of GhCLCg-1 increased rapidly in cotton in response to chloride stress (NaCl or KCl), and the transcript levels increased as the chloride stress intensified. The overexpression of GhCLCg-1 in Arabidopsis thaliana changed the uptake of ions with a decrease of the Na+/K+ ratios in the roots, stems, and leaves, and enhanced salt tolerance. In contrast, silencing GhCLCg-1 in cotton plants increased the Cl– contents in the roots, stems, and leaves and the Na+/K+ ratios in the stems and leaves, resulting in compromised salt tolerance. These results provide important insights into the toxicity of chloride to plants and also indicate that GhCLCg-1 can positively regulates salt tolerance by adjusting ion accumulation in upland cotton.


2010 ◽  
Vol 33 (3) ◽  
pp. 887-896 ◽  
Author(s):  
Sidney Carlos Praxedes ◽  
Claudivan Feitosa de Lacerda ◽  
Thalita Montoril Ferreira ◽  
José Tarquinio Prisco ◽  
Fábio Murilo DaMatta ◽  
...  

Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2549
Author(s):  
Md Al Samsul Huqe ◽  
Md Sabibul Haque ◽  
Ashaduzzaman Sagar ◽  
Md Nesar Uddin ◽  
Md Alamgir Hossain ◽  
...  

Increasing soil salinity due to global warming severely restricts crop growth and yield. To select and recommend salt-tolerant cultivars, extensive genotypic screening and examination of plants’ morpho-physiological responses to salt stress are required. In this study, 18 prescreened maize hybrid cultivars were examined at the early growth stage under a hydroponic system using multivariate analysis to demonstrate the genotypic and phenotypic variations of the selected cultivars under salt stress. The seedlings of all maize cultivars were evaluated with two salt levels: control (without NaCl) and salt stress (12 dS m−1 simulated with NaCl) for 28 d. A total of 18 morpho-physiological and ion accumulation traits were dissected using multivariate analysis, and salt tolerance index (STI) values of the examined traits were evaluated for grouping of cultivars into salt-tolerant and -sensitive groups. Salt stress significantly declined all measured traits except root–shoot ratio (RSR), while the cultivars responded differently. The cultivars were grouped into three clusters and the cultivars in Cluster-1 such as Prabhat, UniGreen NK41, Bisco 51, UniGreen UB100, Bharati 981 and Star Beej 7Star exhibited salt tolerance to a greater extent, accounting for higher STI in comparison to other cultivars grouped in Cluster-2 and Cluster-3. The high heritability (h2bs, >60%) and genetic advance (GAM, >20%) were recorded in 13 measured traits, indicating considerable genetic variations present in these traits. Therefore, using multivariate analysis based on the measured traits, six hybrid maize cultivars were selected as salt-tolerant and some traits such as Total Fresh Weight (TFW), Total Dry Weight (TDW), Total Na+, Total K+ contents and K+–Na+ Ratio could be effectively used for the selection criteria evaluating salt-tolerant maize genotypes at the early seedling stage.


2017 ◽  
Vol 212 ◽  
pp. 69-79 ◽  
Author(s):  
Cibelle Gomes Gadelha ◽  
Rafael de Souza Miranda ◽  
Nara Lídia M. Alencar ◽  
José Hélio Costa ◽  
José Tarquinio Prisco ◽  
...  

2014 ◽  
Vol 522-524 ◽  
pp. 1102-1108
Author(s):  
Yan Liu ◽  
Ting Ting Fu ◽  
Na Sui ◽  
Tong Lou Ding ◽  
Xi Hua Du ◽  
...  

The effect of NaCl on seedling emergence, plant growth and ion accumulation for two sugar beet cultivars was evaluated. The result showed that seedling emergence in Tianyan309 was much lower than that in KWS3418 in the initial 6 days. High salinity markedly decreased final seedling emergence in both cultivars, especially in Tianyan309, while salinity had no adverse effect on total seedling emergence after the recovery experiment in both cultivars. Low salinity (86 mM NaCl) had no significant effect on shoot and root dry weights, while 171 and 257 mM NaCl inhibited shoot and root dry weights of two cultivars, especially for KWS3418. Concentrations of Na+ and Cl- in leaves were increased with increasing NaCl in both cultivars. There was no significant difference between two cultivars in concentrations of Na+ and Cl- in the leaves at different concentrations of NaCl, except that Cl- concentration in leaves of Tianyan309 was lower than that in KWS3418 at 257 mM NaCl. The characteristic of Cl- uptake and/or accumulation may relate to different salt tolerance of KWS3418 and Tianyan309.


Sign in / Sign up

Export Citation Format

Share Document