Response of Sugar Beet to Salinity during the Stages of Seedling Emergence and Plant Growth

2014 ◽  
Vol 522-524 ◽  
pp. 1102-1108
Author(s):  
Yan Liu ◽  
Ting Ting Fu ◽  
Na Sui ◽  
Tong Lou Ding ◽  
Xi Hua Du ◽  
...  

The effect of NaCl on seedling emergence, plant growth and ion accumulation for two sugar beet cultivars was evaluated. The result showed that seedling emergence in Tianyan309 was much lower than that in KWS3418 in the initial 6 days. High salinity markedly decreased final seedling emergence in both cultivars, especially in Tianyan309, while salinity had no adverse effect on total seedling emergence after the recovery experiment in both cultivars. Low salinity (86 mM NaCl) had no significant effect on shoot and root dry weights, while 171 and 257 mM NaCl inhibited shoot and root dry weights of two cultivars, especially for KWS3418. Concentrations of Na+ and Cl- in leaves were increased with increasing NaCl in both cultivars. There was no significant difference between two cultivars in concentrations of Na+ and Cl- in the leaves at different concentrations of NaCl, except that Cl- concentration in leaves of Tianyan309 was lower than that in KWS3418 at 257 mM NaCl. The characteristic of Cl- uptake and/or accumulation may relate to different salt tolerance of KWS3418 and Tianyan309.

1954 ◽  
Vol 5 (2) ◽  
pp. 198
Author(s):  
RF Williams

This paper reports a study in crop physiology in which an analysis of plant growth response and nutrient intake under irrigation in the field is used to interpret the effects of rice hulls as an organic manure. An exploratory experiment showed that relatively speaking the main effects of treatment took place quite early in the growth of the crop. For this reason the main experiment was virtually restricted to these early growth stages. The test plant in both experiments was the tomato. It was found that rice hulls can influence the growth of the crop in at least three ways. Seedling emergence may be delayed, early growth may be retarded by temporary shortage of available nitrogen, and growth may be stimulated by increase in available phosphorus. All three effects are modified by the addition of sulphate of ammonia, but in all cases the result is an increase in yield with rice-hull treatment. Mean seedling emergence for the six experimental treatments had a range of 2.8 days, and it is shown that the mean weights of 18-day-old seedlings could have been accounted for by these differences alone. The pattern of response at 18 days remains for at least five weeks and is not without its effect on the final yields. In spite of their low nitrogen content, rice hulls alone had only a transitory adverse effect on the nitrogen status of the soil. It is suggested that this may not have had any direct effect on the rate of dry-matter production, but that there was a temporary deflection of assimilates to favour root growth at the expense of shoot growth. Such an effect would, of course, have an adverse effect on fruit yield. Plant analyses suggest very considerable increases in available soil phosphorus due to rice-hull treatment. Much of this phosphorus appears to have been fixed during the course of the experiment, but Truog values obtained after the experiment indicated that significant effects of treatment were still present. The increases in Available phosphorus were less when sulphate of ammonia was added with the rice hulls.


Agronomy ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1006
Author(s):  
Badreddine Sijilmassi ◽  
Abdelkarim Filali-Maltouf ◽  
Sara Fahde ◽  
Youness Ennahli ◽  
Said Boughribil ◽  
...  

Plant growth-promoting rhizobia are known to improve crop performance by multiple mechanisms. However, the interaction between host plants and Rhizobium strains is highly influenced by growing conditions, e.g., heat, cold, drought, soil salinity, nutrient scarcity, etc. The present study was undertaken to assess the use of Rhizobium as plant growth promoters under abiotic stress conditions. Fifteen Rhizobium strains isolated from lentil root nodules were tested for phosphate solubilization activity (PSA) and phytohormones production under salt and drought conditions. The results showed that 15 Rhizobium strains were significant phosphate solubilizers, and indole acedic acid (IAA) and gibberellic acid (GA3) producers based on least significant difference (LSD) analysis (p ≤ 0.05). The highest rate of PSA was attributed to three strains namely, 1145N5, 1159N11, and 1159N32 with a range of 144.6 to 205.6 P2O5 (µg/mL). The highest IAA production was recorded in the strain 686N5 with 57.68 ± 4.25 µg/mL as compared to 50.8667 ± 1.41 µg/mL and 37.32 ± 12.59 µg/mL for Rhizobium tropici CIAT 899 and Azospirillum brasilense DSM-1690, respectively. Strain 318N2111 produced 329.24 ± 7.84 µg/mL of GA3 as against 259.84 ± 25.55 µg/mL for A. brasilense DSM-1690. R. tropici CIAT 899 showed tolerance to salt (5% NaCl) and drought (ψ = −2.6 MPa) stress, whereas strain 686N5 showed an extremely high level of salt-tolerance (5% NaCl) and moderate level of drought tolerance (ψ = −0.75 MPa). These results indicate different pathways for drought and salt tolerance mechanisms. The assessment of plant growth promoting (PGP) activities of Rhizobium showed differences between bacterial viability and bacterial PGP activity in terms of abiotic stress tolerance where bacterial PGP activity is interrupted before reaching the bacterial tolerance threshold. These results integrate a new concept of PGPR screening based on PGP activity under abiotic stress.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tabassum Hussain ◽  
Hina Asrar ◽  
Wensheng Zhang ◽  
Bilquees Gul ◽  
Xiaojing Liu

Panicum antidotale, a C4 monocot, has the potential to reclaim saline and drylands and to be utilized as fodder and forage. Its adaptability to survive saline stress has been proven with eco-physiological and biochemical studies. However, little is known about its molecular mechanisms of salt tolerance. In this study, an integrated transcriptome and proteome analysis approach, based on RNA sequencing and liquid chromatography tandem mass spectrometry (LC-MS/MS), was used to identify the said mechanisms. Plants were treated with control (0 mM), low (100 mM), and high (300 mM) sodium chloride (NaCl) treatments to distinguish beneficial and toxic pathways influencing plant biomass. The results indicated differential expression of 3,179 (1,126 upregulated/2,053 downregulated) and 2,172 (898 upregulated/1,274 downregulated) genes (DEGs), and 514 (269 upregulated/245 downregulated) and 836 (494 upregulated/392 downregulated) proteins (DEPs) at 100 and 300 mM NaCl, respectively. Among these, most upregulated genes and proteins were involved in salt resistance strategies such as proline biosynthesis, the antioxidant defense system, ion homeostasis, and sugar accumulation at low salinity levels. On the other hand, the expression of several genes and proteins involved in the respiratory process were downregulated, indicating the inability of plants to meet their energy demands at high salinity levels. Moreover, the impairments in photosynthesis were also evident with the reduced expression of genes regulating the structure of photosystems and increased expression of abscisic acid (ABA) mediated pathways which limits stomatal gas exchange. Similarly, the disturbance in fatty acid metabolism and activation of essential ion transport blockers damaged the integrity of the cell membrane, which was also evident with enhanced malondialdehyde (MDA). Overall, the analysis of pathways revealed that the plant optimal performance at low salinity was related to enhanced metabolism, antioxidative defense, cell growth, and signaling pathways, whereas high salinity inhibited biomass accumulation by altered expression of numerous genes involved in carbon metabolism, signaling, transcription, and translation. The data provided the first global analysis of the mechanisms imparting salt stress tolerance of any halophyte at transcriptome and proteome levels.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shoule Wang ◽  
Zhenyong Zhao ◽  
Shaoqing Ge ◽  
Bin Peng ◽  
Ke Zhang ◽  
...  

Halophytes are capable of resisting salinity, and their root system is the part in direct contact with the saline soil environment. The aim of this study was to compare the responses of root morphology and rhizosphere characteristics to salinity between a halophyte, Suaeda salsa (suaeda), and a glycophyte, Beta vulgaris L. (sugar beet). The soil salt content was set to four levels (0.7, 1.2, 1.7, and 2.7%) by NaCl-treated plants. We investigated the soil pH, EC, nutrients and soil, plant ion (Na+, Cl−, K+, and Mg2+) concentration to evaluate the rhizospheric processes, and salt tolerance of suaeda by the root mat method. The highest biomass was in the 1.2% salt level for suaeda and in the 0.7% salt level for sugar beet. The root length and root surface area of suaeda showed similar trends to biomass, but the root diameter decreased by 11.5–17.9% with higher salinity. The Na+, Cl−, and K+ accumulations in the shoot of suaeda displayed higher than that in sugar beet, while the Mg2+ accumulation was lower in suaeda than that in sugar beet. High salinity resulted in increased pH and EC values in the rhizosphere for suaeda, but lower values of these parameters for sugar beet. Under high salinity, the Olsen phosphorus content was 0.50 g·kg−1 and 0.99 g·kg−1 higher in the rhizosphere than in the non-rhizosphere for suaeda and sugar beet. We concluded that the two species [halophyte, Suaeda salsa (suaeda), and a glycophyte, B. vulgaris L. (sugar beet)] showed diverse approaches for nutrient absorption under salinity stress. Suaeda altered its root morphology (smaller root diameter and longer roots) under salt stress to increase the root surface area, while sugar beet activated rhizospheric processes to take up more nutrients.


2013 ◽  
Vol 726-731 ◽  
pp. 4371-4380
Author(s):  
Yan Liu ◽  
Jia Chao Zhou ◽  
Na Sui ◽  
Tong Lou Ding ◽  
Xiao Dong Zhang ◽  
...  

Effects of salinity and nitrate nitrogen (NO3--N) on growth, ion accumulation, chlorophyll content, chlorophyll fluorescence, and photosynthetic characteristics of sugar beet cultivar KWS3418 were investigated in a greenhouse experiment. Seedlings were exposed to 0 and 1% NaCl in 0.5, 5 or 10 mM NO3--N treatments for 25 days. The results showed that increasing NO3- supply improved shoot and root dry weights, decreased the Cl- concentration in leaves and roots regardless of NaCl concentration. Higher NO3--N supply also increased concentration of chlorophyll, net photosynthetic rate (Pn), actual PSII efficiency (ΦPSII) in leaves and soluble sugar concentration in roots. The results indicate that increasing NO3- supply can help sugar beet to mediate ion homeostasis, to increase the ability of photosynthesis, and subsequently to increase the growth under high salinity. The interactive effects of salinity and nitrate availability can significantly increase soluble sugar in roots of sugar beet.


HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1075C-1075 ◽  
Author(s):  
Stephen R. Grattan ◽  
Catherine M. Grieve ◽  
James A. Poss ◽  
Timothy E. Smith ◽  
Donald L. Suarez

High salinity and boron often occur together in irrigation water in arid climates, but very little research has been done to study the interaction of the two. A greenhouse experiment was conducted at the US Salinity Laboratory in sand tanks to evaluate the interactions between B and saline drainage water on the performance of broccoli. Particular interest in this study was directed towards the composition of the salinizing solution to determine what role various salts have on the salinity-boron interaction. Results from this study indicate that both Cl-based salts and those characteristic of saline drainage water (i.e., a mixture of salts dominated by sodium sulfate) showed a significant salinity–boron interaction. At high salinity, increased B concentration was less detrimental, both visually and quantitatively (i.e., biomass), than it was at low salinity. That is, plants could tolerate a higher solution B-concentration at higher salinity. However, there was no significant difference between salt types. The effects on head weights were more exaggerated than those on shoot biomass. Shoot B concentration was influenced by salinity, but interestingly the direction of influence was dependent upon the B concentration in the solution. Regardless of the composition of the salinizing solution, increased salinity increased shoot B concentration when B concentrations in the solution were relatively low (i.e., 0.5 mg·L-1). At the highest solution B concentration (28 mg·L-1), increased salinity reduced shoot B concentration. Solution B in itself had very little influence on shoot ion accumulation, but both salinity (i.e., EC) and salinity composition had very strong influences on shoot tissue ion composition. Therefore, these data indicate that salinity and B are antagonistic.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Yerong Zhu ◽  
Xiaoxue Li ◽  
Xuan Gao ◽  
Jiqi Sun ◽  
Xiaoyuan Ji ◽  
...  

Abstract Background Duckweed is considered a promising feedstock for bioethanol production due to its high biomass and starch production. The starch content can be promoted by plant growth regulators after the vegetative reproduction being inhibited. Maleic hydrazide (MH) has been reported to inhibit plant growth, meantime to increase biomass and starch content in some plants. However, the molecular explanation on the mechanism of MH action is still unclear. Results To know the effect and action mode of MH on the growth and starch accumulation in Spirodela polyrrhiza 7498, the plants were treated with different concentrations of MH. Our results showed a substantial inhibition of the growth in both fronds and roots, and increase in starch contents of plants after MH treatment. And with 75 µg/mL MH treatment and on the 8th day of the experiment, starch content was the highest, about 40 mg/g fresh weight, which is about 20-fold higher than the control. The I2-KI staining and TEM results confirmed that 75 µg/mL MH-treated fronds possessed more starch and big starch granules than that of the control. No significant difference for both in the photosynthetic pigment content and the chlorophyll fluorescence parameters of PII was found. Differentially expressed transcripts were analyzed in S. polyrrhiza 7498 after 75 µg/mL MH treatment. The results showed that the expression of some genes related to auxin response reaction was down-regulated; while, expression of some genes involved in carbon fixation, C4 pathway of photosynthesis, starch biosynthesis and ABA signal transduction pathway was up-regulated. Conclusion The results provide novel insights into the underlying mechanisms of growth inhibition and starch accumulation by MH treatment, and provide a selective way for the improvement of starch production in duckweed.


Diversity ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 24
Author(s):  
Ling Min Jiang ◽  
Yong Jae Lee ◽  
Ho Le Han ◽  
Myoung Hui Lee ◽  
Jae Cheol Jeong ◽  
...  

Jejubacter calystegiae KSNA2T, a moderately halophilic, endophytic bacterium isolated from beach morning glory (Calystegia soldanella), was determined to be a novel species in a new genus in the family Enterobacteriaceae. To gain insights into the genetic basis of the salinity stress response of strain KSNA2T, we sequenced its genome using two complementary sequencing platforms (Illumina HiSeq and PacBio RSII). The genome contains a repertoire of metabolic pathways, such as those for nitrogen, phosphorus, and some amino acid metabolism pathways. Functional annotation of the KSNA2T genome revealed several genes involved in salt tolerance pathways, such as those encoding sodium transporters, potassium transporters, and osmoprotectant enzymes. Plant growth-promoting bacteria-based experiments indicated that strain KSNA2T promotes the germination of vegetable seeds in saline conditions. Overall, the genetic and biological analyses of strain KSNA2T provide valuable insights into bacteria-mediated salt tolerance in agriculture.


2019 ◽  
Vol 201 (9) ◽  
pp. 1295-1306 ◽  
Author(s):  
Sahar T. M. Tolba ◽  
Mohamed Ibrahim ◽  
Essam A. M. Amer ◽  
Doaa A. M. Ahmed

2011 ◽  
Vol 6 (No. 1) ◽  
pp. 21-29 ◽  
Author(s):  
H. Khaled ◽  
H.A. Fawy

In this study, the effects were investigated of salinity, foliar and soil applications of humic substances on the growth and mineral nutrients uptake of Corn (Hagein, Fardy10), and the comparison was carried out of the soil and foliar applications of humic acid treatments at different NaCl levels. Soil organic contents are one of the most important parts that they directly affect the soil fertility and textures with their complex and heterogenous structures although they occupy a minor percentage of the soil weight. Humic acids are an important soil component that can improve nutrient availability and impact on other important chemical, biological, and physical properties of soils. The effects of foliar and soil applications of humic substances on the plant growth and some nutrient elements uptake of Corn (Hagein, Fardy10) grown at various salt concentrations were examined. Sodium chloride was added to the soil to obtain 20 and 60mM saline conditions. Solid humus was applied to the soil one month before planting and liquid humic acids were sprayed on the leaves twice on 20<sup>th</sup> and 40<sup>th</sup> day after seedling emergence. The application doses of solid humus were 0, 2 and 4 g/kg and those of liquid humic acids were 0, 0.1 and 0.2%. Salinity negatively affected the growth of corn; it also decreased the dry weight and the uptake of nutrient elements except for Na and Mn. Soil application of humus increased the N uptake of corn while foliar application of humic acids increased the uptake of P, K, Mg,Na,Cu and Zn. Although the effect of interaction between salt and soil humus application was found statistically significant, the interaction effect between salt and foliar humic acids treatment was not found significant. Under salt stress, the first doses of both soil and foliar application of humic substances increased the uptake of nutrients.


Sign in / Sign up

Export Citation Format

Share Document