Induced Resistance to Apple Scab: Microscopic Studies on the Infection Cycle of Venturia inaequalis (Cke.) Wint.

1998 ◽  
Vol 146 (8-9) ◽  
pp. 399-405 ◽  
Author(s):  
F. Ortega ◽  
U. Steiner ◽  
H.-W. Dehne
Planta Medica ◽  
2007 ◽  
Vol 73 (09) ◽  
Author(s):  
JM Rollinger ◽  
R Spitaler ◽  
M Menz ◽  
P Schneider ◽  
EP Ellmerer ◽  
...  

2021 ◽  
Vol 22 (2) ◽  
pp. 527
Author(s):  
Małgorzata Podwyszyńska ◽  
Monika Markiewicz ◽  
Agata Broniarek-Niemiec ◽  
Bożena Matysiak ◽  
Agnieszka Marasek-Ciolakowska

Among the fungal diseases of apple trees, serious yield losses are due to an apple scab caused by Venturia inaequalis. Protection against this disease is based mainly on chemical treatments, which are currently very limited. Therefore, it is extremely important to introduce cultivars with reduced susceptibility to this pathogen. One of the important sources of variability for breeding is the process of polyploidization. Newly obtained polyploids may acquire new features, including increased resistance to diseases. In our earlier studies, numerous tetraploids have been obtained for several apple cultivars with ‘Free Redstar’ tetraploids manifesting enhanced resistance to apple scab. In the present study, tetraploids of ‘Free Redstar’ were assessed in terms of phenotype and genotype with particular emphasis on the genetic background of their increased resistance to apple scab. Compared to diploid plants, tetraploids (own-rooted plants) were characterized with poor growth, especially during first growing season. They had considerably shorter shoots, fewer branches, smaller stem diameter, and reshaped leaves. In contrast to own-rooted plants, in M9-grafted three-year old trees, no significant differences between diplo- and tetraploids were observed, either in morphological or physiological parameters, with the exceptions of the increased leaf thickness and chlorophyll content recorded in tetraploids. Significant differences between sibling tetraploid clones were recorded, particularly in leaf shape and some physiological parameters. The amplified fragment length polymorphism (AFLP) analysis confirmed genetic polymorphism of tetraploid clones. Methylation-sensitive amplification polymorphism (MSAP) analysis showed that the level of DNA methylation was twice as high in young tetraploid plants as in a diploid donor tree, which may explain the weaker vigour of neotetraploids in the early period of their growth in the juvenile phase. Molecular analysis showed that ‘Free Redstar’ cultivar and their tetraploids bear six Rvi genes (Rvi5, Rvi6, Rvi8, Rvi11, Rvi14 and Rvi17). Transcriptome analysis confirmed enhanced resistance to apple scab of ‘Free Redstar’ tetraploids since the expression levels of genes related to resistance were strongly enhanced in tetraploids compared to their diploid counterparts.


2004 ◽  
Vol 94 (12) ◽  
pp. 1305-1314 ◽  
Author(s):  
O. Carisse ◽  
D. Rolland

Field and in vitro trials were conducted to establish the influence of the biological control agent Microsphaeropsis ochracea on the ejection pattern of ascospores by Venturia inaequalis and on apple scab development, and to establish the best timing of application. The ejection pattern of ascospores was similar on leaves sprayed with M. ochracea and on untreated leaves. Fall application of M. ochracea combined with a delayed-fungicide program was evaluated in orchards with intermediate and high scab risk. For both orchards, it was possible to delay the first three and two infection periods in 1998 and 1999, respectively, without causing significant increase or unacceptable leaf and fruit scab incidence. To evaluate the best timing of application, sterile leaf disks were inoculated with V. inaequalis and then with M. ochracea 0, 2, 4, 6, 8, 10, 12, 14, and 16 weeks later. After incubation under optimal conditions for pseudothecia development, the number of ascospores was counted. Similarly, M. ochracea was sprayed on scabbed leaves on seven occasions from August to November 1999 and 2000. Leaves were overwintered on the orchard floor and ascospore production was evaluated the following spring. Ascospore production was reduced by 97 to 100% on leaf disks inoculated with M. ochracea less than 6 weeks after inoculation with V. inaequalis, but ascospore production increased with increasing period of time when M. ochracea was applied 8 to 16 weeks after the inoculation with V. inaequalis. In the orchard, the greatest reduction in production of ascospores (94 to 96% in 2000 and 99% in 2001) occurred on leaves sprayed with M. ochracea in August. The production of ascospores was reduced by 61 to 84% in 2000 and 93% in 2001 on leaves sprayed with M. ochracea in September, reduced by 64 to 86% in 2000 and 74 to 89% in 2001 on leaves sprayed in October, and reduced by 54 and 67% in 2000 and 2001, respectively, on leaves sprayed in November. It was concluded that M. ochracea should be applied in August or September and that ascospore maturation models and delayed-fungicide program could be used in orchards treated with this biological control agent.


2009 ◽  
Vol 2 (1) ◽  
pp. 163 ◽  
Author(s):  
Xiangming Xu ◽  
Tony Roberts ◽  
Dez Barbara ◽  
Nick G Harvey ◽  
Liqiang Gao ◽  
...  

Plant Disease ◽  
2019 ◽  
Vol 103 (3) ◽  
pp. 531-537 ◽  
Author(s):  
Janna Beckerman ◽  
Chelsi Abbott

A 2-year study on the use of organic and conventional adjuvants alone, or mixed with urea, was conducted for management of overwintering inoculum of the apple scab pathogen, Venturia inaequalis. Select adjuvants (LI 700, Bond Max, Latron B-1956, and Organic Wet Betty [OWB]) have the potential to hasten urea-driven leaf litter decomposition and reduce V. inaequalis overwintering inoculum comparable to urea, and that one organic surfactant could perform the same level of leaf decomposition as urea. Combinations of adjuvants with urea significantly improved leaf litter degradation compared with urea alone, concomitant with reducing the number of pseudothecia present and pseudothecium fertility. We demonstrate that the combination of urea with Bond Max or OWB reduced pseudothecia fertility and ascospore production to less than 5% in the remaining pseudothecia, a significantly greater reduction than with urea alone. These results suggest that conventional growers combine urea with Bond Max or OWB to more effectively reduce overwintering inoculum, and that the adjuvant OWB can provide organic growers with comparable performance to urea used in conventional orchards for improved sanitation.


1998 ◽  
Vol 123 (6) ◽  
pp. 992-996 ◽  
Author(s):  
Minou Hemmat ◽  
Norman F. Weeden ◽  
Herb S. Aldwinckle ◽  
Susan K. Brown

Bulked segregant analysis was used to identify RAPD markers that display tight linkage to the Vf gene in apple (Malus sp.) that confers resistance to five races of apple scab [Venturia inaequalis (Cke.) Wint.]. We identified several new RAPD markers linked to Vf. The most tightly linked marker in the test population, S52500, was cloned and sequenced. A linkage map of the Vf region was developed using these markers, RAPD markers previously described by other laboratories, and the isozyme locus Pgm-1. An assay was developed for Vf by multiplexing the two markers closely flanking the Vf locus. This assay has a theoretical `escape' value (discarding a resistant plant) of 3% and an error rate (selection of a susceptible plant) of 0.02%.


2008 ◽  
Vol 26 (2) ◽  
pp. 87-92
Author(s):  
G.C. Percival

Abstract A three year field trial was conducted using established apple (Malus cv. Crown Gold) and horse chestnut (Aesculus hippocastanum L.) to assess the efficacy of paclobutrazol (PBZ) root drenches against the foliar pathogens apple scab (Venturia inaequalis (Cooke) G. Wint.,) and Guignardia leaf blotch (Guignardia aesculi (Peck) VB Stewart). In the case of horse chestnut, pathogen severity of Guignardia leaf blotch was less (23–79%) in each of the three-year experimental periods in PBZ-treated trees compared to non-treated controls. Pathogen severity of apple scab was not affected during the first year after PBZ application; however, less (25–73%) disease severity was recorded in years 2 and 3 compared to non-PBZ treated controls. An increased PBZ concentration was associated with lower pathogen severity of both fungal pathogens. Irrespective of species, less pathogen severity in PBZ-treated trees was accompanied with greater leaf chlorophyll fluorescence (16–49%) values as measures of leaf photosynthetic efficiency. Marked differences in growth regulation between apple cv. Crown Gold (tolerant) and horse chestnut (sensitive) were recorded. PBZ applications resulted in less mean stem extension in both tree species but only reduced mean leaf size of horse chestnut. Based on the results of this investigation it is suggested that PBZ root drenches potentially offer a means of reducing the severity of apple scab and Guignardia leaf blotch for professionals involved with the nursery industry. However, where a zero pathogen control policy is required supplementary fungicide sprays would be needed. Similarly, the potential loss of aesthetics due to excessive growth regulation needs to be weighed against the benefits of pathogen protection and failure of PBZ to achieve total pathogen control may result in strong selection pressure for PBZ resistance in surviving populations.


2008 ◽  
Vol 133 (3) ◽  
pp. 383-389 ◽  
Author(s):  
Gayle M. Volk ◽  
Christopher M. Richards ◽  
Ann A. Reilley ◽  
Adam D. Henk ◽  
Patrick A. Reeves ◽  
...  

Genetic diversity and disease resistance are described for 496 seedlings from wild populations of Malus orientalis Uglitzh. collected in southern Russia and Turkey in 1998 and 1999. Eighty-five half-sib families were genotyped using seven microsatellite markers, and disease resistance was determined for apple scab (Venturia inaequalis Cooke), cedar apple rust (Gymnosporangium juniperi-virginianae Schwein), and fire blight (Erwinia amylovora Burrill). Individuals from the two Russian Caucasus collection locations were homogeneous compared with populations from the four Turkish collection locations. Within three of the Turkish collection locations, some half-sib families were highly diverse and several of these families had unusually high levels of disease resistance. In all, twenty individuals exhibited resistance to all three diseases. Bayesian analyses of the population structure revealed six distinct clusters. Most of the individuals segregated into two clusters, one containing individuals primarily from southern Russia and the other containing individuals from both Russia and northern Turkey. Individuals in the four small clusters were specific to Turkish collection locations. These data suggest wild populations of M. orientalis from regions around the Black Sea are genetically distinguishable and show high levels of diversity.


Sign in / Sign up

Export Citation Format

Share Document