scholarly journals Novel transcription factor Satb2 interacts with matrix attachment region DNA elements in a tissue-specific manner and demonstrates cell-type-dependent expression in the developing mouse CNS

2005 ◽  
Vol 21 (3) ◽  
pp. 658-668 ◽  
Author(s):  
Olga Britanova ◽  
Sergey Akopov ◽  
Sergey Lukyanov ◽  
Peter Gruss ◽  
Victor Tarabykin
Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 146
Author(s):  
Takahiro Nakayama ◽  
Toshiyuki Fukutomi ◽  
Yasuo Terao ◽  
Kimio Akagawa

The HPC-1/syntaxin 1A (Stx1a) gene, which is involved in synaptic transmission and neurodevelopmental disorders, is a TATA-less gene with several transcription start sites. It is activated by the binding of Sp1 and acetylated histone H3 to the −204 to +2 core promoter region (CPR) in neuronal cell/tissue. Furthermore, it is depressed by the association of class 1 histone deacetylases (HDACs) to Stx1a–CPR in non-neuronal cell/tissue. To further clarify the factors characterizing Stx1a gene silencing in non-neuronal cell/tissue not expressing Stx1a, we attempted to identify the promoter region forming DNA–protein complex only in non-neuronal cells. Electrophoresis mobility shift assays (EMSA) demonstrated that the −183 to −137 OL2 promoter region forms DNA–protein complex only in non-neuronal fetal rat skin keratinocyte (FRSK) cells which do not express Stx1a. Furthermore, the Yin-Yang 1 (YY1) transcription factor binds to the −183 to −137 promoter region of Stx1a in FRSK cells, as shown by competitive EMSA and supershift assay. Chromatin immunoprecipitation assay revealed that YY1 in vivo associates to Stx1a–CPR in cell/tissue not expressing Stx1a and that trichostatin A treatment in FRSK cells decreases the high-level association of YY1 to Stx1a-CPR in default. Reporter assay indicated that YY1 negatively regulates Stx1a transcription. Finally, mass spectrometry analysis showed that gene silencing factors, including HDAC1, associate onto the −183 to −137 promoter region together with YY1. The current study is the first to report that Stx1a transcription is negatively regulated in a cell/tissue-specific manner by YY1 transcription factor, which binds to the −183 to −137 promoter region together with gene silencing factors, including HDAC.


Genome ◽  
2000 ◽  
Vol 43 (3) ◽  
pp. 483-486 ◽  
Author(s):  
C Rampitsch ◽  
M C Jordan ◽  
S Cloutier

A 2.2-kb nucleotide sequence rich in AT, located upstream from the Bx7 allele of the high-molecular-weight glutenin Glu-B1 locus in wheat (Triticum aestivum cv. Glenlea) was cloned following amplification by PCR. The 5prime region of this sequence contains motifs typically found in matrix attachment regions (MARs) in other plants. We have shown that part of the 2.2-kb DNA binds to wheat nuclear matrix (NM) in vitro, at least as strongly as a known MAR (Adh1) from maize suggesting that there is a MAR upstream of Bx7. This MAR is approximately 800 bases in length running from -750 to -1560 bases, relative to the start codon. Although the MAR is associated with a tissue-specific gene and is beside a strong tissue-specific promoter, the MAR sequence did not lead to tissue-specific expression of the beta-glucuronidase marker gene under the control of the rice actin promoter in various tissues. Presence of the MAR was only slightly beneficial with respect to expression levels, which were not greatly altered in transient expression assays in various wheat tissues although a slight increase in the number of foci was observed in leaves, which have low transformation efficiencies.Key words: matrix attachment region, particle bombardment, wheat.


2007 ◽  
Vol 35 (15) ◽  
pp. 5073-5084 ◽  
Author(s):  
Kazuhiko Yamasaki ◽  
Toshihiko Akiba ◽  
Tomoko Yamasaki ◽  
Kazuaki Harata

2018 ◽  
Author(s):  
Shaoke Lou ◽  
Kellie A. Cotter ◽  
Tianxiao Li ◽  
Jin Liang ◽  
Hussein Mohsen ◽  
...  

AbstractThere has been much effort to prioritize genomic variants with respect to their impact on “function”. However, function is often not precisely defined: Sometimes, it is the disease association of a variant; other times, it reflects a molecular effect on transcription or epigenetics. Here we coupled multiple genomic predictors to build GRAM, a generalized model, to predict a well-defined experimental target: the expression-modulating effect of a non-coding variant in a cell-specific manner. As a first step, we performed feature engineering: using a LASSO regularized linear model, we found transcription factor (TF) binding most predictive, especially for TFs that are hubs in the regulatory network; in contrast, evolutionary conservation, a popular feature in many other functional-impact predictors, has almost no contribution. Moreover, TF binding inferred from in vitro SELEX is as effective as that from in vivo ChIP-Seq. Second, we implemented GRAM integrating SELEX features and expression profiles. The program combines a universal regulatory score for a variant in a non-coding element with a modifier score reflecting the particular cell type. We benchmarked GRAM on a large-scale MPRA dataset in the GM12878 cell line, achieving a ROC score of ∼0.73; performance on the K562 cell line was similar. Finally, we evaluated the performance of GRAM on targeted regions using luciferase assays in MCF7 and K562 cell lines. We noted that changing the insertion position of the construct relative to the reporter gene gives very different results, highlighting the importance of carefully defining the functional target the model is predicting.Author SummaryNoncoding variants lie outside of protein-coding regions, and are found to have disease associations. However, knowledge on the molecular effect of these non-coding variants in a cell-specific context is very limited. Also, different output between multiple experiment platforms may introduce extra complexity in analyzing the molecular function of these variants. We developed GRAM, a generalized model to predict molecular effect of non-coding variants in multiple cell types for different experimental platforms. We first selected the most informative cell-independent SELEX transcription factor binding score on the variant locus as features and then combine cell-specific gene expression profile to build a multi-step prediction model. GRAM has been successfully tested on both MPRA and Luciferase assay, and on three different cell lines: GM12878, K562 and MCF7, shows high performance.


Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3270
Author(s):  
Marta Elżbieta Kasprzyk ◽  
Weronika Sura ◽  
Agnieszka Dzikiewicz-Krawczyk

B-cell lymphomas and leukemias derive from B cells at various stages of maturation and are the 6th most common cancer-related cause of death. While the role of several oncogenes and tumor suppressors in the pathogenesis of B-cell neoplasms was established, recent research indicated the involvement of non-coding, regulatory sequences. Enhancers are DNA elements controlling gene expression in a cell type- and developmental stage-specific manner. They ensure proper differentiation and maturation of B cells, resulting in production of high affinity antibodies. However, the activity of enhancers can be redirected, setting B cells on the path towards cancer. In this review we discuss different mechanisms through which enhancers are exploited in malignant B cells, from the well-studied translocations juxtaposing oncogenes to immunoglobulin loci, through enhancer dysregulation by sequence variants and mutations, to enhancer hijacking by viruses. We also highlight the potential of therapeutic targeting of enhancers as a direction for future investigation.


1999 ◽  
Vol 274 (50) ◽  
pp. 35703-35710 ◽  
Author(s):  
Hiromi Hirata ◽  
Isao Yamamura ◽  
Kunihiko Yasuda ◽  
Akio Kobayashi ◽  
Norihiro Tada ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document