scholarly journals Long-term reaction to bone cement in osteoporotic bone: new bone formation in vertebral bodies after vertebroplasty

2008 ◽  
Vol 212 (5) ◽  
pp. 697-701 ◽  
Author(s):  
Volker Braunstein ◽  
Christoph M. Sprecher ◽  
Armando Gisep ◽  
Lorin Benneker ◽  
Kathrin Yen ◽  
...  
2005 ◽  
Vol 873 ◽  
Author(s):  
Balasundaram G ◽  
Sato M ◽  
Webster TJ

AbstractIn an effort to decrease the number of problems associated with osteoporosis, the long-term goal of the present study is to design calcium phosphate-based nanoparticles that specifically attach to areas of low bone density and once attached, allow for the targeted release of bioactive agents that can quickly increase bone formation. Efforts are focused on nanoparticles of calcium phosphate-based materials since they are similar in size and chemistry to the major inorganic components of bone. As a first step in this research, the objective of the present study was to synthesize nanoparticles of crystalline hydroxyapatite (or HA) and amorphous calcium phosphate. Crystalline HA is stable under physiological fluids and, thus, will release embedded bioactive agents slowly. Alternatively, amorphous calcium phosphate is highly biodegradable and will, thus, release embedded bioactive agents quickly. A further objective of the present study was to functionalize such inorganic biodegradable materials with amino groups which would allow for the subsequent attachment of entities to direct such nanoparticles to osteoporotic bone and increased bone formation once attached. One promising approach to direct the nanoparticles to osteoporotic bone is to attach antibodies to pentosidine on the nanoparticles since pentosidine is present in higher amounts in osteoporotic compared to healthy bone. A promising approach to increase bone growth once nanoparticles attach to osteoporotic bone, is to embed nanoparticles with regions of the bone growth factor: bone morphogenic protein-2 (or BMP-2). Results of this study demonstrated the successful synthesis of both crystalline HA and amorphous calcium phosphate nanoparticles. Furthermore, results showed that these nanoparticles can be functionalized with versatile amino groups. In this manner, this study takes the first steps toward utilizing calcium phosphate based nanoparticles to reverse bone loss associated with osteoporosis.


2021 ◽  
Vol 30 (04) ◽  
pp. 311-318
Author(s):  
Uta Syrbe

AbstractAxial spondyloarthritis is an inflammatory disease of the axial skeleton. Its pathogenesis is only partly understood. At the beginning, there are inflammatory changes in the sacroiliac joints which are followed by inflammation in vertebral bodies and in facet joints. Low back pain occurring in the morning hours is the dominant clinical symptom. In the early phase, inflammatory changes are detectably by MRI. Inflammation promotes a process of joint remodelling in the sacroiliac joints which leads to erosions, sclerosis and bony bridging, i. e. ankylosis, which are detectable by X-ray. In the spine, vertical osteophytes developing at sites of previous inflammation connect vertebral bodies as syndesmophytes. Additional ossification of longitudinal ligaments contributes to the so-called bamboo spine. Ossification of the spine promotes fixation of a severe kyphosis of the thoracic spine which strongly impairs spine mobility and quality of life. High disease activity seems a prominent risk factor for development of structural damage. However, although NSAIDs improve clinical symptoms, they do not reduce new bone formation. In contrast, TNFα and IL-17 inhibitors seem to retard new bone formation apart from their clinical efficacy. Research work of the last years identified immunological pathways of inflammation. However, the trigger and cellular components of the immune reaction in the bone marrow are still poorly defined. Osteoclasts are involved in the destruction of the subchondral bone, while osteoblasts facilitate new bone formation and cartilage ossification. This review gives an overview about diagnostics and therapy of axSpA and about risk factors for the development of structural damage. Concepts about the immune pathogenesis and joint remodeling in AS are given under recognition of genetic and histopathological studies.


1982 ◽  
Vol 63 (2) ◽  
pp. 153-160 ◽  
Author(s):  
J. Reeve ◽  
J. R. Green ◽  
R. Hesp ◽  
Patricia Hulme

1. Calcium balances and formation rates of new bone measured with an improved tracer technique using 85Sr have been determined simultaneously in 21 patients with idiopathic osteoporosis and vertebral crush fractures. 2. A weak positive association was found between calcium balance and the kinetically measured calcium accretion rate, which is the sum of the true rate of bone formation and various long-term exchange processes. 3. The more negative balances were associated with significantly greater early loss of tracer taken up into bone by ‘accretion’, so that long-term (> 200 day) uptake was reduced. 4. This indicates that patients actively losing bone mineral have lower true rates of bone formation and higher rates of long-term exchange than their fellow patients who are more nearly in calcium equilibrium. 5. No statistically significant association was found between measured rates of bone resorption and calcium balance.


2007 ◽  
Vol 361-363 ◽  
pp. 1343-1346 ◽  
Author(s):  
Matti Peltola ◽  
Kalle Aitasalo ◽  
Teemu Tirri ◽  
Jami Rekola ◽  
A. Puntala

Successful craniofacial reconstruction needs both a well-known and a reliable reconstruction material. However, there is often a lack of long-term knowledge of the tissue reactions and healing process in the human body. In this study, frontal sinus obliterations with bovine bone natural hydroxyapatite derivative (BHA), synthetic bioactive glass S53P4 (BAG) and hydroxyapatite cement (HAC) were investigated with clinical, histologic, scanning electron microscopic (SEM) and energy dispersive x-ray analysis (EDXA) 27, 12 and 3 years postoperatively. The aim was to determine the long-term clinical biocompatibility of the used materials. Histologic studies revealed bone formation with BHA particles and lamellar bone with BAG granule remnants in close contact to the new bone formation. In HAC reconstruction there was scattered fibroconnective tissue growth without new bone formation in the surface of HAC implantation. Neither foreign body reaction nor any abnormal findings were seen. SEM studies revealed a CaP layer on the surface of BAG granule remnants. In EDXA studies, composition profiles showed Ca-, P- and Si- rich layers on the BAG granule surface. No differences were found in CaO and P2O5 levels between BHA granules and HAC implantation and the surrounding bone. All investigated biomaterials were well tolerated in long-term applications.


2005 ◽  
Vol 11 (3) ◽  
pp. 390-398 ◽  
Author(s):  
Osamu Sugiyama ◽  
Dong Sung An ◽  
Sam P.K. Kung ◽  
Brian T. Feeley ◽  
Seth Gamradt ◽  
...  

2018 ◽  
Vol 19 (11) ◽  
pp. 3531 ◽  
Author(s):  
Vivien Kauschke ◽  
Maike Schneider ◽  
Annika Jauch ◽  
Matthias Schumacher ◽  
Marian Kampschulte ◽  
...  

The development of new and better implant materials adapted to osteoporotic bone is still urgently required. Therefore, osteoporotic muscarinic acetylcholine receptor M3 (M3 mAChR) knockout (KO) and corresponding wild type (WT) mice underwent osteotomy in the distal femoral metaphysis. Fracture gaps were filled with a pasty α-tricalcium phosphate (α-TCP)-based hydroxyapatite (HA)-forming bone cement containing mesoporous bioactive CaP-SiO2 glass particles (cement/MBG composite) with or without Brain-Derived Neurotrophic Factor (BDNF) and healing analyzed after 35 days. Histologically, bone formation was significantly increased in WT mice that received the BDNF-functionalized cement/MBG composite compared to control WT mice without BDNF. Cement/MBG composite without BDNF increased bone formation in M3 mAChR KO mice compared to equally treated WT mice. Mass spectrometric imaging showed that the BDNF-functionalized cement/MBG composite implanted in M3 mAChR KO mice was infiltrated by newly formed tissue. Leukocyte numbers were significantly lower in M3 mAChR KO mice treated with BDNF-functionalized cement/MBG composite compared to controls without BDNF. C-reactive protein (CRP) concentrations were significantly lower in M3 mAChR KO mice that received the cement/MBG composite without BDNF when compared to WT mice treated the same. Whereas alkaline phosphatase (ALP) concentrations in callus were significantly increased in M3 mAChR KO mice, ALP activity was significantly higher in WT mice. Due to a stronger effect of BDNF in non osteoporotic mice, higher BDNF concentrations might be needed for osteoporotic fracture healing. Nevertheless, the BDNF-functionalized cement/MBG composite promoted fracture healing in non osteoporotic bone.


1981 ◽  
Vol 63-B (1) ◽  
pp. 120-125 ◽  
Author(s):  
L Sazbon ◽  
T Najenson ◽  
M Tartakovsky ◽  
E Becker ◽  
Z Grosswasser

Sign in / Sign up

Export Citation Format

Share Document