Comprehensive regional and temporal gene expression profiling of the rat brain during the first 24 h after experimental stroke identifies dynamic ischemia-induced gene expression patterns, and reveals a biphasic activation of genes in surviving tissue

2006 ◽  
Vol 96 (1) ◽  
pp. 14-29 ◽  
Author(s):  
Mattias Rickhag ◽  
Tadeusz Wieloch ◽  
Gunilla Gido ◽  
Eskil Elmer ◽  
Morten Krogh ◽  
...  
Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1487-1487
Author(s):  
Lars Bullinger ◽  
Thomas Hielscher ◽  
Ursula Botzenhardt ◽  
Sabrina Heinrich ◽  
Richard Schlenk ◽  
...  

Abstract Cytogenetically normal acute myeloid leukemia (CN-AML) comprises a biologically and clinically heterogeneous group of AML. In the past years, molecular markers like FLT3, CEBPA and NPM1 gene mutations have been identified in CN-AML, and the presence of such mutations carries important prognostic information. Furthermore, DNA microarray-based gene expression profiling (GEP) has been shown to capture the molecular heterogeneity of cancers, and has been applied to build classifiers and clinical outcome predictors in AML. While prior studies have defined gene expression patterns associated with NPM1, CEBPA, and FLT3, we assessed the clinical relevance of gene signatures. We profiled a large set of clinically well annotated CN-AML specimens (n=296 entered on two multicenter trials for patients <60 years (AMLSG HD98A and AMLSG 07-04). The 142 cases from the AMLSG HD98A trial were analyzed using a 40k cDNA microarray platform and the 154 cases from trial AMLSG 07-04 using Affymetrix microarrays (Human Genome U133 Plus 2.0 Arrays). In this data set we applied supervised analyses (LASSO penalized logistic regression) to define gene expression patterns characterizing FLT3 internal tandem duplication (ITD), CEPBA and NPM1 mutations as well as outcome signatures. We were able to define distinct signatures associated with NPM1, CEBPA, and FLT3 consisting of 39, 27, and 47 genes, respectively. The NPM1 signature revealed a high prediction accuracy of >95% in leave-one-out cross validated classification. Prediction of FLT3-ITD or CEBPA mutation performed less well with accuracies of 80% and 73%, respectively. However, for both CEBPA and FLT3-ITD the predicted mutation class labels performed slightly better than the marker itself with regard to the prognostic impact on overall survival (CEPBA: p=0.006 vs. p=0.007, FLT3-ITD p=9.57e-06 vs. p=5.11e-05; logrank test). In addition, using LASSO we also could define a signature associated with event free survival (EFS) in the cases from the AMLSG 07-04 trial. Adjusted for age, NPM1, and FLT3-ITD mutational status this signature was significantly associated with EFS (p=0.005; Wald test), and validation in our independent cDNA data set also provided significant prognostic information (p=0.02; Wald test). Thus, GEP-based classification of CN-AML might help to identify alternative genetic changes that either phenocopy or block the effects of common molecular aberrations. Furthermore, gene expression patterns of yet unknown aberrations are reflected in prognostic signatures. Therefore, signature genes also provide a starting point to dissect “mutations” pathways, and our findings underscore the potential clinical utility of a gene expression based measure in CN-AML.


2021 ◽  
Author(s):  
Wai Meng Lau ◽  
Menaga Subramaniam ◽  
Hoe Han Goh ◽  
Yang Mooi Lim

An hourly progression of gene expression profiling in maslinic acid treated Raji cells, which reported activation of several key pathways.


2021 ◽  
Author(s):  
Arvin Haghighatfard ◽  
Soha Seifollahi ◽  
Pegah Rajabi ◽  
Niloofar Rahmani ◽  
Rojin Ghannadzadeh

Abstract Background: The high rate of methamphetamine use disorder among young adults and women of childbearing age makes it imperative to clarify the long-term effects of Methamphetamine exposure on the offspring. Behavioral and cognitive problems had been reported in children with parental Methamphetamine exposure (PME). The present study aimed to assess the acute and chronic effects of PME in molecular regulations and gene expression profiles of children during their first years of life.Methods: All subjects were recruited before birth, and sampling was conducted from the first ten days of birth, twelve months, twenty months, and thirty-six months of age. Finally, 2658 children with PME and 3573 normal children had been finished the follow-up. RNA extraction was operated from blood samples and gene expression profiling was conducted by using the Affymetrix GeneChip Human Genome U133 plus 2.0 Array Platform. Gene expression data were confirmed by Real-time PCR. Results: Gene expression profiling during thirty-six months showed several constant mRNA level alterations in children with PME compared with normal. These genes are involved in several gene ontologies and pathways involved with the immune system, neuronal functions, and bioenergetic metabolism. It seems that Methamphetamine use disorder before and during the pregnancy period may affect the expression profile of children, and these changes could remain years after birth. Affected genes have some similarities with the gene expression patterns of addiction, psychiatric disorders, neurodevelopmental disabilities, and immune deficiencies. Conclusion: Findings may shed light on the molecular effects of prenatal methamphetamine exposure and may lead to new psychological and somatic caring protocols for these children based on their potential abnormalities.


Neuroscience ◽  
2010 ◽  
Vol 166 (3) ◽  
pp. 852-863 ◽  
Author(s):  
Q. Shi ◽  
L. Guo ◽  
T.A. Patterson ◽  
S. Dial ◽  
Q. Li ◽  
...  

Reproduction ◽  
2008 ◽  
Vol 135 (5) ◽  
pp. 581-592 ◽  
Author(s):  
Toshio Hamatani ◽  
Mitsutoshi Yamada ◽  
Hidenori Akutsu ◽  
Naoaki Kuji ◽  
Yoshiyuki Mochimaru ◽  
...  

Mammalian ooplasm supports the preimplantation development and reprograms the introduced nucleus transferred from a somatic cell to confer pluripotency in a cloning experiment. However, the underlying molecular mechanisms of oocyte competence remain unknown. Recent advances in microarray technologies have allowed gene expression profiling of such tiny specimens as oocytes and preimplantation embryos, generating a flood of information about gene expressions. So, what can we learn from it? Here, we review the initiative global gene expression studies of mouse and/or human oocytes, focusing on the lists of maternal transcripts and their expression patterns during oogenesis and preimplantation development. Especially, the genes expressed exclusively in oocytes should contribute to the uniqueness of oocyte competence, driving mammalian development systems of oocytes and preimplantation embryos. Furthermore, we discuss future directions for oocyte gene expression profiling, including discovering biomarkers of oocyte quality and exploiting the microarray data for ‘making oocytes’.


Sign in / Sign up

Export Citation Format

Share Document