Bidirectional transformation of aromatic aldehydes by Desulfovibrio desulfuricans under nitrate-dissimilating conditions

1996 ◽  
Vol 22 (2) ◽  
pp. 115-120 ◽  
Author(s):  
M. Parekh ◽  
H.L. Drake ◽  
S.L. Daniel
2003 ◽  
Vol 10 (5) ◽  
pp. 449-457 ◽  
Author(s):  
F. Cara ◽  
L. Alves ◽  
F. Girio ◽  
A. Salle ◽  
A. Capasso ◽  
...  

2019 ◽  
Vol 22 (2) ◽  
pp. 123-128
Author(s):  
Setareh Habibzadeh ◽  
Hassan Ghasemnejad-Bosra ◽  
Mina Haghdadi ◽  
Soheila Heydari-Parastar

Background: In this study, we developed a convenient methodology for the synthesis of coumarin linked to pyrazolines and pyrano [2,3-h] coumarins linked to 3-(1,5-diphenyl-4,5- dihydro-1H-pyrazol-3-yl)-chromen-2-one derivatives using Chlorosulfonic acid supported Piperidine-4-carboxylic acid (PPCA) functionalized Fe3O4 nanoparticles (Fe3O4-PPCA) catalyst. Materials and Methods:: Fe3O4-PPCA was investigated as an efficient and magnetically recoverable Nanocatalyst for the one-pot synthesis of substituted coumarins from the reaction of coumarin with a variety of aromatic aldehydes in high to excellent yield at room temperature under solvent-free conditions. The magnetic nanocatalyst can be easily recovered by applying an external magnet device and reused for at least 10 reaction runs without considerable loss of reactivity. Results and Conclusion: The advantages of this protocol are the use of commercially available materials, simple and an inexpensive procedure, easy separation, and an eco-friendly procedure, and it shows good reaction times, good to high yields, inexpensive and practicability procedure, and high efficiency.


Author(s):  
Hadis Khodadad ◽  
Farhad Hatamjafari ◽  
Khalil Pourshamsian ◽  
Babak Sadeghi

Aim and Objective: Microwave-assisted condensation of acetophenone 1 and aromatic aldehydes 2 gave chalcone analogs 3, which were cyclized to pyrazole derivatives 6a-f via the reaction with hydrazine hydrate and oxalic acid in the presence of the catalytic amount of acetic acid in ethanol. Materials and Methods: The structural features of the synthesized compounds were characterized by melting point, FT-IR, 1H, 13C NMR and elemental analysis. Results: The antibacterial activities of the synthesized pyrazoles was evaluated against three gram-positive bacteria such as Enterococcus durans, Staphylococcus aureus, Bacillus subtilis and two gram-negative bacteria such as Escherichia coli and Salmonella typhimurium. Conclusion: All the synthesized pyrazoles showed relatively high antibacterial activity against S. aureus strain and none of them demonstrated antibacterial activity against E. coli.


2018 ◽  
Vol 21 (4) ◽  
pp. 298-301 ◽  
Author(s):  
Ghasem Marandi

Aim and Objective: The reaction of cyclohexylisocyanide and 2-aminopyridine-3- carboxylic acid in the presence of benzaldehyde derivatives in ethanol led to 3-(cyclohexylamino)-2- arylimidazo[1,2-a]pyridine-8-carboxylic acids in high yields. In a three component condensation reaction, isocyanide reacts with 2-aminopyridine-3-carboxylic acid and aromatic aldehydes without any prior activation. Material and Methods: The synthesized products have stable structures which have been characterized by IR, 1H, 13C and Mass spectroscopy as well as CHN-O analysis. Results: In continuation of our attempts to develop simple one-pot routes for the synthesis of 3- (cyclohexylamino)-2-arylimidazo[1,2-a]pyridine-8-carboxylic acids, aromatic aldehydes with divers substituted show a high performance. Conclusion: In conclusion, this study introduces the art of combinatorial chemistry using a simple one-pot procedure for the synthesis of new materials which are interesting compounds in medicinal and biological sciences.


2018 ◽  
Vol 21 (4) ◽  
pp. 302-311
Author(s):  
Younes Ghalandarzehi ◽  
Mehdi Shahraki ◽  
Sayyed M. Habibi-Khorassani

Aim & Scope: The synthesis of highly substituted piperidine from the one-pot reaction between aromatic aldehydes, anilines and β-ketoesters in the presence of tartaric acid as a catalyst has been investigated in both methanol and ethanol media at ambient temperature. Different conditions of temperature and solvent were employed for calculating the thermodynamic parameters and obtaining an experimental approach to the kinetics and mechanism. Experiments were carried out under different temperature and solvent conditions. Material and Methods: Products were characterized by comparison of physical data with authentic samples and spectroscopic data (IR and NMR). Rate constants are presented as an average of several kinetic runs (at least 6-10) and are reproducible within ± 3%. The overall rate of reaction is followed by monitoring the absorbance changes of the products versus time on a Varian (Model Cary Bio- 300) UV-vis spectrophotometer with a 10 mm light-path cell. Results: The best result was achieved in the presence of 0.075 g (0.1 M) of catalyst and 5 mL methanol at ambient temperature. When the reaction was carried out under solvent-free conditions, the product was obtained in a moderate yield (25%). Methanol was optimized as a desirable solvent in the synthesis of piperidine, nevertheless, ethanol in a kinetic investigation had none effect on the enhancement of the reaction rate than methanol. Based on the spectral data, the overall order of the reaction followed the second order kinetics. The results showed that the first step of the reaction mechanism is a rate determining step. Conclusion: The use of tartaric acid has many advantages such as mild reaction conditions, simple and readily available precursors and inexpensive catalyst. The proposed mechanism was confirmed by experimental results and a steady state approximation.


2020 ◽  
Vol 23 (2) ◽  
pp. 157-167
Author(s):  
Zainab Ehsani-Nasab ◽  
Ali Ezabadi

Objective: A facile and efficient method for synthesis of 3, 4-dihydropyrimidin-2(1H)-ones via Biginelli reaction catalyzed by a novel dicationic Brönsted acidic ionic liquid, [(EtNH2)2SO][HSO4]2, has been successfully developed. Material and Method:: 3, 4-Dihydropyrimidin-2(1H)-ones were synthesized through one-pot condensation of aromatic aldehydes, ethyl acetoacetate, and urea under solvent-free conditions using [(EtNH2)2SO][HSO4]2 as a novel catalyst. The progress of the reaction was monitored by thin-layer chromatography (ethyl acetate / n-hexane = 1 / 5). The products have been characterized by IR, 1H NMR, 13C NMR, and also by their melting points. Results: In this research, a library of dihydropyrimidinone derivatives was synthesized via Biginelli reaction under solvent-free conditions at 120oC using [(EtNH2)2SO][HSO4]2 as a catalyst. Various aromatic aldehydes, as well as heteroaromatic aldehydes, were employed, affording good to high yields of the corresponding products and illustrating the substrate generality of the present method. In addition, the prepared dicationic Brönsted acidic ionic liquid can be easily recovered and reused. Conclusion: 1, 1’-Sulfinyldiethylammonium bis (hydrogen sulfate), as a novel dicationic ionic liquid, can act as a highly efficient catalyst for the synthesis of 3, 4-dihydropyrimidin-2(1H)-ones under solvent-free conditions.


2020 ◽  
Vol 20 (18) ◽  
pp. 1929-1941
Author(s):  
Heba A. Elhady ◽  
Hossa F. Al-Shareef

Background and Objective: Due to the well-documented anti-proliferative activity of 2-thiohydantoin incorporated with pyrazole, oxadiazole, quinazoline, urea, β-naphthyl carbamate and Schiff bases, they are noteworthy in pharmaceutical chemistry. Methods: An efficient approach for the synthesis of a novel series of 2-thiohydantoin derivatives incorporated with pyrazole and oxadiazole has proceeded via the reaction of the acyl hydrazide with chalcones and/or triethyl orthoformate. Schiff bases were synthesized by the reaction of the acyl hydrazide with different aromatic aldehydes. Moreover, Curtius rearrangement was applied to the acyl azide to obtain the urea derivative, quinazoline derivative, and carbamate derivative. Results: The synthesized compounds structures were discussed and confirmed depending on their spectral data. The anticancer activity of these heterocyclic compounds was evaluated against the breast cancer cell line (MCF-7), where they showed variable activity. Compound 5d found to have a superior anticancer activity, where it has (IC50 = 2.07 ± 0.13 μg/mL) in comparison with the reference drug doxorubicin that has (IC50 = 2.79 ± 0.07 μg / mL). Then compound 5d subjected to further studies such as cell cycle analysis and apoptosis. Apoptosis was confirmed by the upregulation of Bax, downregulation of Bcl-2, and the increase of the caspase 3/7percentage. Conclusion: Insertion of pyrazole, oxadiazole and, quinazoline moieties with 2-thiohydantoin moiety led to the enhancement of its anti-proliferative activity. Hence they can be used as anticancer agents.


Sign in / Sign up

Export Citation Format

Share Document