scholarly journals DEVELOPMENTAL MODE AND SPECIES GEOGRAPHIC RANGE IN REGULAR SEA URCHINS (ECHINODERMATA: ECHINOIDEA)

Evolution ◽  
1995 ◽  
Vol 49 (3) ◽  
pp. 476-489 ◽  
Author(s):  
Richard B. Emlet
2013 ◽  
Vol 9 (3) ◽  
pp. 20130068 ◽  
Author(s):  
Max E. Maliska ◽  
Matthew W. Pennell ◽  
Billie J. Swalla

Ascidian species (Tunicata: Ascidiacea) usually have tailed, hatching tadpole larvae. In several lineages, species have evolved larvae that completely lack any tail tissues and are unable to disperse actively. Some tailless species hatch, but some do not hatch before going through metamorphosis. We show here that ascidian species with the highest speciation rates are those with the largest range sizes and tailed hatching larval development. We use methods for examining diversification in binary characters across a posterior distribution of trees, and show that mode of larval development predicts geographical range sizes. Conversely, we find that species with the least dispersive larval development (tailless, non-hatching) have the lowest speciation rates and smallest geographical ranges. Our speciation rate results are contrary to findings from sea urchins and snails examined in the fossil record, and further work is necessary to reconcile these disparate results.


Author(s):  
D. F. Blake ◽  
L. F. Allard ◽  
D. R. Peacor

Echinodermata is a phylum of marine invertebrates which has been extant since Cambrian time (c.a. 500 m.y. before the present). Modern examples of echinoderms include sea urchins, sea stars, and sea lilies (crinoids). The endoskeletons of echinoderms are composed of plates or ossicles (Fig. 1) which are with few exceptions, porous, single crystals of high-magnesian calcite. Despite their single crystal nature, fracture surfaces do not exhibit the near-perfect {10.4} cleavage characteristic of inorganic calcite. This paradoxical mix of biogenic and inorganic features has prompted much recent work on echinoderm skeletal crystallography. Furthermore, fossil echinoderm hard parts comprise a volumetrically significant portion of some marine limestones sequences. The ultrastructural and microchemical characterization of modern skeletal material should lend insight into: 1). The nature of the biogenic processes involved, for example, the relationship of Mg heterogeneity to morphological and structural features in modern echinoderm material, and 2). The nature of the diagenetic changes undergone by their ancient, fossilized counterparts. In this study, high resolution TEM (HRTEM), high voltage TEM (HVTEM), and STEM microanalysis are used to characterize tha ultrastructural and microchemical composition of skeletal elements of the modern crinoid Neocrinus blakei.


Author(s):  
Frank J. Longo

Measurement of the egg's electrical activity, the fertilization potential or the activation current (in voltage clamped eggs), provides a means of detecting the earliest perceivable response of the egg to the fertilizing sperm. By using the electrical physiological record as a “real time” indicator of the instant of electrical continuity between the gametes, eggs can be inseminated with sperm at lower, more physiological densities, thereby assuring that only one sperm interacts with the egg. Integrating techniques of intracellular electrophysiological recording, video-imaging, and electron microscopy, we are able to identify the fertilizing sperm precisely and correlate the status of gamete organelles with the first indication (fertilization potential/activation current) of the egg's response to the attached sperm. Hence, this integrated system provides improved temporal and spatial resolution of morphological changes at the site of gamete interaction, under a variety of experimental conditions. Using these integrated techniques, we have investigated when sperm-egg plasma membrane fusion occurs in sea urchins with respect to the onset of the egg's change in electrical activity.


Planta Medica ◽  
2010 ◽  
Vol 76 (12) ◽  
Author(s):  
S Ivanova ◽  
I Urakova ◽  
O Pozharitskaya ◽  
A Shikov ◽  
V Makarov

Sign in / Sign up

Export Citation Format

Share Document