scholarly journals Characteristics of biofilm formation by Candida tropicalis and antifungal resistance

2008 ◽  
Vol 8 (3) ◽  
pp. 442-450 ◽  
Author(s):  
Fernando César Bizerra ◽  
Celso Vataru Nakamura ◽  
Celina De Poersch ◽  
Terezinha Inez Estivalet Svidzinski ◽  
Regina Mariuza Borsato Quesada ◽  
...  
2021 ◽  
pp. 104889
Author(s):  
Elahe Sasani ◽  
Sadegh Khodavaisy ◽  
Sassan Rezaie ◽  
Mohammadreza Salehi ◽  
Mohammad Hossein Yadegari

2020 ◽  
Vol 29 (3) ◽  
pp. 37-45
Author(s):  
Mabrouk M Ghonaim ◽  
Azza Z. Labeeb ◽  
Alyaa I. Eliwa ◽  
Eman H. Salem

Background: Accurate and rapid identification of Candida species is necessary for proper diagnosis and treatment of candidiasis due to emergences of drug-resistant strains especially among immunocompromised patients. Objectives: Identification of Candida clinical isolates to the species level using different phenotypic and molecular methods. Biofilm-forming ability and antifungal resistance were also studied. Methodology: Sixty-nine Candida strains were isolated from 220 immunocompromised patients. Identification was performed using chromogenic Candida agar, VITEK 2 system and multiplex polymerase chain reaction (PCR). Biofilm formation was detected by the tube method and antifungal susceptibility was tested using the VITEK2 system. Results: The most common source of Candida isolates was from urine (33.3%) and ICUs (56.6%). VITEK 2 system detected 9 spp.: C. albicans (34.8%), C. tropicalis (21.7%), C. famata (8.7%), C. lusitaniae (7.2%), C. cruzi (7.2%), C. ciferri (5.8%), C. dubliniensis (5.8%), C. parapsilosis (5.8 %) and C. glabrata. Candida isolates showed high resistance to flucytocine (49.3%), and high sensitivity to fluconazole, micafungin, voriconazole and caspofungin (88.4%, 81.2% and 81.2 % respectively). Only 30.4% of all Candida isolates were biofilm producers. There was a positive relationship between antifungal resistance and biofilm formation among Candida isolates. Conclusion: C. albicans was the predominant species. Chromogenic Candida agar and VITEK 2 system were valuable tests compared to PCR in speciation of Candida isolates. Antifungal susceptibility was significantly related to biofilm production and its evaluation is important for proper treatment..


Peptides ◽  
2011 ◽  
Vol 32 (8) ◽  
pp. 1741-1747 ◽  
Author(s):  
Santi M. Mandal ◽  
Ludovico Migliolo ◽  
Octavio L. Franco ◽  
Ananta K. Ghosh

mBio ◽  
2019 ◽  
Vol 10 (5) ◽  
Author(s):  
Lohith Kunyeit ◽  
Nawneet K. Kurrey ◽  
K. A. Anu-Appaiah ◽  
Reeta P. Rao

ABSTRACT Systemic infections of Candida species pose a significant threat to public health. Toxicity associated with current therapies and emergence of resistant strains present major therapeutic challenges. Here, we report exploitation of the probiotic properties of two novel, food-derived yeasts, Saccharomyces cerevisiae (strain KTP) and Issatchenkia occidentalis (strain ApC), as an alternative approach to combat widespread opportunistic fungal infections. Both yeasts inhibit virulence traits such as adhesion, filamentation, and biofilm formation of several non-albicans Candida species, including Candida tropicalis, Candida krusei, Candida glabrata, and Candida parapsilosis as well as the recently identified multidrug-resistant species Candida auris. They inhibit adhesion to abiotic surfaces as well as cultured colon epithelial cells. Furthermore, probiotic treatment blocks the formation of biofilms of individual non-albicans Candida strains as well as mixed-culture biofilms of each non-albicans Candida strain in combination with Candida albicans. The probiotic yeasts attenuated non-albicans Candida infections in a live animal. In vivo studies using Caenorhabditis elegans suggest that exposure to probiotic yeasts protects nematodes from infection with non-albicans Candida strains compared to worms that were not exposed to the probiotic yeasts. Furthermore, application of probiotic yeasts postinfection with non-albicans Candida alleviated pathogenic colonization of the nematode gut. The probiotic properties of these novel yeasts are better than or comparable to those of the commercially available probiotic yeast Saccharomyces boulardii, which was used as a reference strain throughout this study. These results indicate that yeasts derived from food sources could serve as an effective alternative to antifungal therapy against emerging pathogenic Candida species. IMPORTANCE Non-albicans Candida-associated infections have emerged as a major risk factor in the hospitalized and immunecompromised patients. Besides, antifungal-associated complications occur more frequently with these non-albicans Candida species than with C. albicans. Therefore, as an alternative approach to combat these widespread non-albicans Candida-associated infections, here we showed the probiotic effect of two yeasts, Saccharomyces cerevisiae (strain KTP) and Issatchenkia occidentalis (ApC), in preventing adhesion and biofilm formation of five non-albicans Candida strains, Candida tropicalis, Candida krusei, Candida glabrata, Candida parapsilosis, and Candida auris. The result would influence the current trend of the conversion of conventional antimicrobial therapy into beneficial probiotic microbe-associated antimicrobial treatment.


2020 ◽  
Vol 66 (6) ◽  
pp. 377-388
Author(s):  
Jonathas Sales de Oliveira ◽  
Vandbergue Santos Pereira ◽  
Débora de Souza Collares Maia Castelo-Branco ◽  
Rossana de Aguiar Cordeiro ◽  
José Júlio Costa Sidrim ◽  
...  

Candida tropicalis is a prominent non-Candida albicans Candida species involved in cases of candidemia, mainly causing infections in patients in intensive care units and (or) those presenting neutropenia. In recent years, several studies have reported an increase in the recovery rates of azole-resistant C. tropicalis isolates. Understanding C. tropicalis resistance is of great importance, since resistant strains are implicated in persistent or recurrent and breakthrough infections. In this review, we address the main mechanisms underlying C. tropicalis resistance to the major antifungal classes used to treat candidiasis. The main genetic basis involved in C. tropicalis antifungal resistance is discussed. A better understanding of the epidemiology of resistant strains and the mechanisms involved in C. tropicalis resistance can help improve diagnosis and assessment of the antifungal susceptibility of this Candida species to improve clinical management.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Ibrahim Bitar ◽  
Roy A. Khalaf ◽  
Houda Harastani ◽  
Sima Tokajian

As leading opportunistic fungal pathogens identification and subtyping ofCandidaspecies are crucial in recognizing outbreaks of infection, recognizing particularly virulent strains, and detecting the emergence of drug resistant strains. In this study our objective was to compare identification ofCandida albicansby the hospitals through the use of conventional versus identification based on the ITS (Internal Transcribed Spacer) and to assess biofilm forming capabilities, drug resistance patterns and correlate these with MLST typing. ITS typing revealed a 21.2% hospital misidentification rate. Multidrug resistance to three drugs out of four tested was detected within 25% of the isolates raising concerns about the followed treatment regimens. Drug resistant strains as well as biofilm formers were phylogenetically related, with some isolates with significant biofilm forming capabilities being correlated to those that were multidrug resistant. Such isolates were grouped closely together in a neighbor-joining tree generated by MLST typing indicating phylogenetic relatedness, microevolution, or recurrent infection. In conclusion, this pilot study gives much needed insight concerningC. albicansisolates circulating in Lebanese hospitals and is the first study of its kind correlating biofilm formation, antifungal resistance, and evolutionary relatedness.


2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Yasemin Oz ◽  
Iman Qoraan ◽  
Egemen Gokbolat

Candida bloodstream infections are a significant cause of morbidity and mortality in hospitalized patients. The most important contribution of biofilm is the higher antifungal resistance than planktonic cells. We aimed to investigate the biofilm formation rate and antifungal susceptibility characteristics of our bloodstream isolates, and evaluate two different biofilm detection methods. A total of 200 bloodstream Candida isolates were included. The biofilms were formed on 96-well microtiter plates and measured by spectrophotometric percent transmittance and 2,3-bis(2- methoxy-4-nitro-5-sulfo-phenyl)-2H-tetrazolium- 5-carboxanilide colorimetric assay. In addition antifungal susceptibilities of these isolates were evaluated against caspofungin, anidulafungin and amphotericin B by reference method. Biofilm production rate was considerably high among our bloodstream isolates. The most important biofilm producer species was C. tropicalis; C. glabrata had the lowest biofilm production rate. The consistency rate between biofilm detection methods was 66%. Remarkable antifungal resistance was not observed among our isolates in general. In conclusion, biofilm production in Candida species is an important virulence factor, and its rate is considerably high in bloodstream isolates. At present, a standardized method has not been established to detect the biofilm formation.


Micron ◽  
2011 ◽  
Vol 42 (7) ◽  
pp. 726-732 ◽  
Author(s):  
Emanuele J.G. França ◽  
Célia G.T.J. Andrade ◽  
Luciana Furlaneto-Maia ◽  
Rosana Serpa ◽  
Marcelo T. Oliveira ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document