Effects of the mean daily doses of imatinib during the first year on survival of patients with chronic myeloid leukemia in Japan: a study of the Hokkaido Hematology Study Group

2007 ◽  
Vol 0 (0) ◽  
pp. 071119190146003-???
Author(s):  
Junichi Sugita ◽  
Junji Tanaka ◽  
Mitsutoshi Kurosawa ◽  
Takashi Fukuhara ◽  
Satoshi Hashino ◽  
...  
2015 ◽  
Vol 63 (3) ◽  
pp. 406-411 ◽  
Author(s):  
Hidemitsu Kurosawa ◽  
Akihiko Tanizawa ◽  
Chikako Tono ◽  
Akihiro Watanabe ◽  
Haruko Shima ◽  
...  

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4144-4144
Author(s):  
Giovanni Caocci ◽  
Martino Deidda ◽  
Antonio Noto ◽  
Christian Cadeddu ◽  
Marianna Greco ◽  
...  

Background. Cardiovascular adverse events (CV-AE) are emerging complications in chronic myeloid leukemia (CML) patients treated with second and third generation tyrosine kinase inhibitors (TKIs). Despite the importance of CV risk factors,predictive CV-AE biomarkers are still lacking. Further understanding of the molecular pathways underlying CV-AE may promote novel strategies to prevent its initiation prior to clinical disease. In this scenario, the use of a novel tool such as metabolomics may be useful for the identification of new metabolic pathways related to CV-AE. Metabolites are the output of cellular metabolism, accounting for expression and activity of genes, transcripts, and proteins, and offering unique insights into small molecule regulation. For the first time we evaluated the correlation between CV-AE and metabolomic profile in CML patients treated with TKIs. Methods. We considered 39 adult CP-CML patients (mean age 49, range 24-70), without comorbidity at baseline, consecutively diagnosed and treated with imatinib, dasatinib nilotinib and ponatinib, at the Haematology Unit of "Businco Hospital", Cagliari, Italy. All patients underwent a metabolomic profile detection, after CV-AE or during follow-up, and were stratified in 2 groups (with or without CV-AE). Plasma samples were collected and acquired chromatogram was analysed by means of the free software AMDIS (Automated Mass Spectral Deconvolution and Identification System; http://chemdata.nist.gov/mass-spc/amdis) that identified each peak by comparison of the relative mass spectra and the retention times with those stored in an in-house made library comprising 255 metabolites. Data were investigated by applying the supervised multivariate statistical approach OPLS-DA (Orthogonal partial least square discriminant analysis) (SIMCA, version 13.0, Umetrics, Umea, Sweden). Results. The mean follow-up since CML diagnosis was 3.7 years (range 0.9-5); 22 (56.4%) patients were treated frontline, while 17 (43.5%) underwent second or subsequent TKI lines of treatments. The reason for switching was inefficacy in 15.3% and intolerance in 28.2%. At CV-AE or last follow-up 16 (41%) patients were treated with imatinib, 8 (20.5%) with dasatinib, 14 (35.8%) with nilotinib and 1 patient with ponatinib (2.7%). Overall, 17 CV-AE were recorded: 7 cases of hypercholesterolemia, 5 pleural or pericardial effusions, one episode of hypertension and 4 cardiac events (atrial fibrillation,ST-segment elevation myocardial infarction, reduction of cardiac ejection fraction and dissecting aneurysm of the aorta); 7 CV-AE were graded as 3 according to the common toxicity criteria and one patient died from dissecting aneurysm of the aorta). The 60-month cumulative CV-AE incidence was 54.4±9.1%. The mean time between the start of the treatment and the occurrence of a CV-AE was 44.4 months (range 19-60). OPLS-DA showed that patient's samples were clearly separated into 2 groups indicating that CV-AE patients (blue dots) presented a markedly distinct metabolic profile compared with patients without CV-AE (green dots); (figure 1). The parameters of the model were R2Y = 0.76 and Q2 = 0.44. To validate the OPLS-DA model, a permutation was performed resulting statistically significant (p=0,002). The main discriminant metabolites were tyrosine, lysine, ornithine, glutamic acid, 2-piperdincarboxylic acid, proline, citric acid, phenylalanine, mannitol, threonine, leucine, creatine, serine, 4-hydroxyproline, and alanine (more represented in CV-AE group); while unknown 204, myristic acid, arabitol, oxalic acid, 4-deoxyrithronic acid, elaidic acid and ribose resulted less expressed in CV-AE group. Conclusions. This exploratory study showed different metabolomic profile of CML patients with CV-AE underwent TKI treatment, suggesting possible mechanisms of endothelial damage mediated by the accumulation of metabolites. Tyrosine, highly expressed in the CV-AE CML group, is a reliable marker of oxidative stress in various acute and chronic diseases.Metabolomics research has considerable potential for translating the metabolic fingerprint into personalized therapeutic strategies. These preliminary data should be confirmed in prospective clinical trials. Figure 1 Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2592-2592
Author(s):  
Giovanna Rege-Cambrin ◽  
Carmen Fava ◽  
Enrico Gottardi ◽  
Filomena Daraio ◽  
Emilia Giugliano ◽  
...  

Abstract Background Consensus has been achieved that standardized molecular quantitative analysis (RQ-PCR) on peripheral blood (PB) is a suitable method for monitoring residual disease in chronic myeloid leukemia (CML). However, BM is still obtained at specific timepoints, and in a number of cases, only bone marrow (BM) sample collected for cytogenetic analysis is available. Being one of the laboratory involved in the standardization process of molecular monitoring for CML patients, we decided to perform a comparative analysis of BM and PB samples in order to evaluate the consistency of the results. Methods Between March 2009 and January 2013, 230 consecutive RQ-PCR tests to assess BCR-ABL transcript levels from simultaneously collected PB and BM samples were performed (for a total of 460 analysis) on 77 patients affected by Ph+ CML in chronic phase treated in our center. All samples were analyzed in the same laboratory following international guidelines (Cross N, Leukemia 2012) and results were expressed according to the International Scale; ABL1 was used as control gene. Time from blood-drawn to processing was within 3-4 hours. Results Among the 230 pairs, 3 were considered as not evaluable because of inadequate material; for the purpose of this study, the remaining 227 pairs were considered as “evaluable”. 204 pairs were classified as “fit” when both BM and PB ABL amplification resulted in more than 10.000 copies; 23 pairs were considered unfit for ABL1 <10.000 in either one of the two samples (21) or both (2). The mean number of ABL1 copies in all evaluable samples was 35.639 for BM (SD 21.465) and 30.958 for PB samples (SD 18.696). Correlation analysis was performed on the whole population and in 4 subgroups: No Complete Cytogenetic Response (CCyR, 22%), CCyR without Major Molecular Response (MMR), (21.6%), CCyR with MMR (excluding patients with MR4 or better,19.8%), and CCyR with MR4 – MR4.5 (32,6%). Cytogenetic response was not available in 9 BM samples (4%), not included in the subgroup analysis. Spearman correlation of BCR/ABL ratio values between PB versus BM paired samples resulted in a statistically significant correlation in all groups, both for evaluable and fit pairs. Correlation was stronger in samples that were not in MMR or better (table 1 and figure 1). The Wilcoxon test showed that the mean difference of BCR/ABL values between paired PB and BM samples was not significantly different from zero (in evaluable and fit pairs by considering the whole population). Concordance was further analyzed by the K test which resulted in a coefficient equal to 0.627, corresponding to a notable degree of concordance. For patients in CCyR, agreement on classification of response (MMR, MR4, MR4.5) between paired PB and BM samples was observed in 125/168 evaluable pairs; 22 out of the 43 evaluable cases of disagreement were due to technical failures (in 10 BM and 12 PB samples). In 14 of the remaining 21 cases, PB was more sensitive. Conclusions In a single center experience of molecular analysis, BCR/ABL ratio was highly consistent in BM and PB samples. In less than 10% of the cases a single test did not reach the required sensitivity of 10.000 ABL copies and the double testing allowed to obtain a valid result. This may be especially valuable in evaluating an early response (i.e. at 3 months), when the amount of disease has prognostic relevance. The analysis will be expanded to include samples coming from different centers to evaluate a possible role of timing and transport on data consistency. Disclosures: Saglio: Novartis: Consultancy, Honoraria; Bristol Myers Squibb: Consultancy, Honoraria; ARIAD: Consultancy, Honoraria; Celgene: Consultancy, Honoraria.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1577-1577 ◽  
Author(s):  
Ghayas C. Issa ◽  
Hagop M. Kantarjian ◽  
Elias Jabbour ◽  
Gautam Borthakur ◽  
Srdan Verstovsek ◽  
...  

Abstract Background Additional chromosomal abnormalities (ACAs) in the Philadelphia chromosome (Ph)-negative metaphases that emerge as patients with chronic myeloid leukemia (CML) are treated with tyrosine kinase inhibitors (TKIs) have been reported during treatment with imatinib. It has been suggested that these might be associated with an inferior outcome and in rare instances lead to the emergence of a new malignant clone resulting in myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML) (Jabbour et. al, Blood 2007). This phenomenon has not been well characterized when other TKIs are used. We conducted a retrospective analysis of patients treated on imatinib, dasatinib, nilotinib, and ponatinib frontline trials to assess the frequency and prognostic impact of ACAs appearing during the treatment after achieving cytogenetic response. Patients and Methods A total of 524 patients with CML were evaluated with a median age at diagnosis of 48 years (range 15 to 86). These included 236 patients treated with imatinib, 125 with nilotinib, 118 with dasatinib and 45 with ponatinib. All the patients were treated in clinical trials approved by the institutional board review and signed an informed consent in accordance with institutional guidelines and in accordance with the declaration of Helsenki. Conventional cytogenetic analysis was done in bone marrow cells using standard G-banding technique at baseline, every 3 months during the first year, then every 6-12 months. Clonal ACAs were identified as abnormalities present in ≥2/20 metaphases or, if only one metaphase, present in ≥2 consecutive assessments. Results After a median follow-up of 83.8 months (range 0.3-176.6 months) 13% (72/524) patients had ACAs, of which 7% (41/524) were clonal. ACAs were seen in 11% (27/236) of patients on imatinib compared to 11% (13/118, p=0.9) on dasatinib, 19 % (24/125, p= 0.04) on nilotinib, and 17% (8/45, p=0.2) on ponatinib. Six patients had both clonal evolution (CE) and ACAs at different times. The median number of metaphases containing ACAs was 5/20 (range 1 to 20) with an average of 7/20. Most appeared within the first year of the start of the TKI (median 6 months, range 3-72 months); they first appeared after 12 months of therapy in 21 of the 72 (29%) patients. ACAs were transient and were detected in 2 or less time points in 52 of the 72 (72%) cases. The most common clonal ACAs were - Y (13/41) and +8 (4/41). The rates of cytogenetic and molecular responses were similar for patients with and without clonal ACAs (CCyR: 88% vs 91%; p=0.55) (MMR: 78% vs 86%, p=0.20). Having clonal ACAs did not affect the rate of deep molecular response either (MR4.5 71% vs 67%; p =0.65). There was no significant difference in EFS and OS (5y EFS 73% vs 86%; p=0.19) (5y OS 77% vs 93%; p=0.06) although there was a trend for lower rates for both. Responses and clinical outcomes were similar between different TKIs for patients with and without clonal ACAs. One patient with -7 treated with ponatinib developed MDS. Monosomy 7 appeared 9 months from the start of treatment in 9/20 metaphases and persisted. He was taken off ponatinib because of pancytopenia. He subsequently received bosutinib, achieved and maintained a CCyR. A high-risk MDS was documented approximately 1 year after appearance of the -7 clone. He was started on decitabine and achieved a partial cytogenetic response for MDS. Another patient in the imatinib cohort with -7 developed secondary AML (CCyR for CML) and died from a multiple organ failure after allogeneic stem cell transplant from a one antigen-mismatched unrelated donor. There was a third patient with -7 that later had CE and developed Ph+ CML blast phase. Conclusion ACAs are rare and mostly transient events that appear during the treatment of CML with TKIs. These changes do not affect responses or clinical outcomes, independent of what TKI is used. A small subset of patients with -7 may develop AML or MDS warranting close monitoring of patients with changes that are reminiscent of those diseases. Molecular analysis after appearance of ACAs could help identify mutations driving the Ph-clone into AML or MDS. Disclosures Pemmaraju: Stemline: Research Funding; Incyte: Consultancy, Honoraria; Novartis: Consultancy, Honoraria, Research Funding; LFB: Consultancy, Honoraria. Cortes:BerGenBio AS: Research Funding; Pfizer: Consultancy, Research Funding; Novartis: Consultancy, Research Funding; Teva: Research Funding; BMS: Consultancy, Research Funding; Ariad: Consultancy, Research Funding; Astellas: Consultancy, Research Funding; Ambit: Consultancy, Research Funding; Arog: Research Funding; Celator: Research Funding; Jenssen: Consultancy.


Blood ◽  
2006 ◽  
Vol 108 (8) ◽  
pp. 2811-2813 ◽  
Author(s):  
Craig Kovitz ◽  
Hagop Kantarjian ◽  
Guillermo Garcia-Manero ◽  
Lynne V. Abruzzo ◽  
Jorge Cortes

AbstractDuring therapy with imatinib, some patients with chronic myeloid leukemia (CML) develop chromosomal abnormalities in Philadelphia chromosome (Ph)-negative cells. These abnormalities are frequently transient and their clinical consequence is unclear. Although some reports have suggested that the abnormalities might be associated with secondary myelodysplastic syndrome (MDS), the diagnosis has not always been established using standard criteria. We report 3 cases of patients treated with imatinib for CML who were subsequently found to have chromosomal abnormalities in Ph-negative cells. One of them developed acute myelogenous leukemia (AML) and the other 2 developed high-risk MDS that rapidly transformed to AML. These cases were identified in a total study group of 1701 patients. Although these occurrences are rare, the findings highlight the need for close monitoring of patients with CML treated with imatinib.


2019 ◽  
Vol 10 (4) ◽  
pp. 1-4
Author(s):  
Sajid Ali ◽  
Tahir Mehmood ◽  
Kausar Bano ◽  
Muhammad Akram et al.

ABSTRACT:MATERIAL AND METHODS: This study was conducted on 92 diagnosed cases of chronic myeloid leukemia at Department of Oncology, Jinnah Hospital Lahore from August 2016 to January 2017. Patients from either gender, between the ages of 20 to 60 years were included in the study while patients having diabetes and end stage renal disease with glomerular filtration rate less than 15 ml/min were excluded. Nilotinib treatment with the standard dose (300 mg twice daily) was given to patients with chronic phase of chronic myeloid leukemia (CP-CML). Patients were monitored as recommended by the current treatment guidelines. Treatment outcome of CP-CML in terms of efficacy was assessed at the end of 6 months of treatment.OBJECTIVE: To determine the efficacy of nilotinib in patients of chronic myeloid leukemia, chronic phase, in terms of detection of BCR-ABL by FISH method. RESULT: The mean age of the patients was 38.84 ± 11.67 years, with male to female ratio of 1.04:1. The mean PH value of the patients was 17.05 ± 18.53 and efficacy was achieved in 36 (39.13%) patients. CONCLUSION: The efficacy of nilotinib was achieved in significant number of CML patients.


2019 ◽  
Vol 65 (2) ◽  
pp. 67-72
Author(s):  
Marija Pendovska ◽  
Zorica Naumovska ◽  
Irina Panovska ◽  
Marica Pavkovic ◽  
Goce Kalcev ◽  
...  

The aim of the study was to evaluate the safety profile of nilotinib administered to chronic myeloid leukemia (CML) at patients. The study was conducted from March 2018 to May 2019 and it included 20 patients with CML in chronic phase. Of these 20 patients, 17 had previously been treated with imatinib and 3 with hydroxyurea. The mean duration of treatment with Nilotinib was 6.75 months. In nine patients treated with nilotinib (400 mg), 55% complained of fatigue, 33% of headache and 22.2% of pruritus. In five patients treated with Nilotinib (600 mg), 20% complained of headache, 40% of fatigue and 20% of pruritus. In addition, in six patients treated with nilotinib (800 mg), 50% complained of headache and fatigue, 17% with pruritus and visual disorder was observed in 20% of cases. In the study, the adverse reactions were observed between the age of 20 and 40 and it was 7.1%, in contrast to the group of patients between the age of 40 and 60 where the incidence of adverse reactions was 21.42%. The incidence of adverse reactions in patients in the age group over 60 years it was 57.1%. In terms of gender, the incidence of adverse reactions was equal to 50% for both men and women. In conclusion, this study showed that treatment with nilotinib was well tolerated, with adverse reactions of an easy degree. Future evaluation is necessary in order to understanding the adverse reaction of nilotinib in comparison with other tyrosine kinase inhibitors. Keywords: nilotinib, pharmacovigilance, safety, chronic myeloid leukemia


Sign in / Sign up

Export Citation Format

Share Document