Variation in fish assemblages across dry-season pools in a Mediterranean stream: effects of pool morphology, physicochemical factors and spatial context

2010 ◽  
Vol 19 (1) ◽  
pp. 74-86 ◽  
Author(s):  
D. F. Pires ◽  
A. M. Pires ◽  
M. J. Collares-Pereira ◽  
M. F. Magalhães
2014 ◽  
Vol 30 (10) ◽  
pp. 1269-1280 ◽  
Author(s):  
D. F. Pires ◽  
P. Beja ◽  
M. F. Magalhães

2008 ◽  
Vol 59 (2) ◽  
pp. 97 ◽  
Author(s):  
Thomas S. Rayner ◽  
Bradley J. Pusey ◽  
Richard G. Pearson

Strong relationships between seasonal flooding, instream habitat structure and fish assemblages have been well documented in large tropical rivers (e.g. the flood pulse concept). However, the mechanics of these relationships are likely to differ substantially in smaller coastal rivers, such as those in Costa Rica, south-east Brazil and Australia’s Wet Tropics. These systems typically feature steep upland streams with short, deeply incised lowland channels and poorly connected floodplains. This hypothesis was investigated by documenting spatial and temporal variation in fish-habitat relationships in the Mulgrave River, north-east Queensland. Sampling was conducted at four lowland sites under a range of flow conditions, from dry-season baseflows to a one-in-ten-year flood. Longitudinal environmental gradients and fine-scale habitat patches were important in regulating fish assemblage structure during the dry season. However, high wet-season flows, constrained by the deep channel, acted as disturbances rather than gentle flood-pulses. In particular, the mobilisation of bed sediments led to scouring of aquatic vegetation and a dramatic reduction in habitat heterogeneity. Seasonal movements of fish led to significant changes in assemblage structure – from a community dominated by Neosilurus ater, Hypseleotris compressa, Awaous acritosus and Redigobius bikolanus during the dry season, to one dominated by Nematalosa erebi, Ambassis agrammus and Glossamia aprion during the wet season. Based on these observations, together with information from the literature, a conceptual model of fish-habitat dynamics is presented that is better suited to small tropical rivers than those developed in larger systems with expansive floodplains.


2018 ◽  
Vol 35 ◽  
pp. 1-12
Author(s):  
Cynthia Diniz Souza ◽  
Vandick S. Batista ◽  
Nidia Noemi Fabré

Seasonal ecological effects caused by temperature and photoperiod are typically considered minimal in the tropics. Nevertheless, annual climate cycles may still influence the distribution and abundance of tropical species. Here, we investigate whether seasonal patterns of precipitation and wind speed influence the structure of coastal fish assemblages and fishing yields in northeast Brazil. Research trips were conducted during the rainy and dry seasons using commercial boats and gear to sample the fish community. Diversity was analyzed using abundance Whittaker curves, diversity profiles and the Shannon index. Principal Component Analysis (PCA) was used to analyze associations between the abundance of species and various environmental variables related to seasonality. A total of 2,373 fish were collected, representing 73 species from 34 families – 20 of which were classified as both frequent and abundant. Species richness was greater and more equitable during the rainy season than the dry season – driven by changes in the precipitation rather than to wind speed. Species diversity profiles were slightly greater during the rainy season than the dry season, but this difference was not statistically significant. Using PCA was identified three groups of species: the first associated with wind speed, the second with precipitation, and the third with a wide range of sampling environments. This latter group was the largest and most ecologically heterogeneous. We conclude that tropical coastal fish assemblages are largely influenced by local variables, and seasonally mediated by annual changes related to precipitation intensity and wind speed, which in turn influences fishery yields.


2019 ◽  
Vol 76 (4) ◽  
pp. 1052-1061 ◽  
Author(s):  
Christopher J Henderson ◽  
Ben L Gilby ◽  
Thomas A Schlacher ◽  
Rod M Connolly ◽  
Marcus Sheaves ◽  
...  

Abstract Coastal seascapes are composed of a diversity of habitats that are linked in space and time by the movement of organisms. The context and configuration of coastal ecosystems shapes many important properties of animal assemblages, but potential seascape effects of natural and artificial habitats on nearby habitats are typically considered in isolation. We test whether, and how, the seascape context of natural and urban habitats modified fish assemblages across estuaries. Fish were sampled with underwater videos in five habitat types (mangroves, rock bars, log snags, unvegetated sediments, armoured shorelines) in 17 estuaries in eastern Australia. Different habitats supported distinct fish assemblages, but the spatial context of mangroves and armoured shorelines had pervasive ecological effects that extended across entire estuaries. In most estuarine habitats, fish diversity and abundance was greatest when they were in close proximity of mangroves, and decreased due to the proximity of armoured shorelines. Many cities are centred on estuaries, and urban expansion is often associated with the fragmentation of mangrove forests. Our findings emphasize that these transformations of urban estuarine landscapes are likely to propagate to broader ecological impacts detectable in multiple habitats beyond mangrove forests.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Lee Nyanti ◽  
Chen-Lin Soo ◽  
Afina-Yian Chundi ◽  
Elsa-Cordelia-Durie Lambat ◽  
Alvinna Tram ◽  
...  

Construction of cascade dams has been shown to have impacts on fish assemblages and biodiversity. Yet, there is no literature on fish assemblages in the Murum River that connects the cascading Bakun and Murum dams in Sarawak, Malaysia. Hence, study on this modified ecosystem is necessitated to better understand the effects of the cascade dam construction on fish fauna. For this, fish samples were caught at five stations located along the river during both dry and wet seasons. Environmental parameters were taken concurrently with fish sampling. Length-weight relationship, condition factors, and diet composition of selected fish species in the river were also determined. The present study demonstrated that there are indications of the impact of cascading dams on the formation of a complex ecosystem in the Murum River, that is, changing from the shallow downstream of the Murum Dam to the deep transitional and inundated zone of the Bakun reservoir. The transitional zone in the Murum River exhibited the lowest fish species diversity, richness, and evenness during the dry season due to low pH and DO coupled with high turbidity. The biological indices improved when the water quality improved during the wet season. On the contrary, the diversity and evenness indices at the inundated tributary station decreased remarkably during the wet season, likely due to the migration of fish during the onset of the rainy season. This study showed that Barbonymus schwanenfeldii has a wider feeding habit which contributes to its higher distribution and abundance in the Murum River. The growth patterns of B. schwanenfeldii, Cyclocheilichthys apogon, Hampala macrolepidota, Lobocheilos ovalis, and Osteochilus enneaporos were better during wet than dry season. Overall, the condition factor of all native fish species in the Murum River was in poor to fair condition, whereas the exotic species, Oreochromis mossambicus, exhibited excellent condition (K value > 2) for both seasons. The increase in the number of O. mossambicus coupled with its high condition factor indicates biological intrusion and a potential threat to the native fish species in the Murum River. Continuous monitoring is essential to detect in-time risk issues associated with environmental degradation and biological invasion in this regulated and inundated river ecosystem.


2021 ◽  
Vol 8 ◽  
Author(s):  
Mariana Cravo ◽  
Armando J. Almeida ◽  
Hamilton Lima ◽  
João Azevedo e Silva ◽  
Salomão Bandeira ◽  
...  

Mangroves are highly productive ecosystems with complex adaptations to the transition between freshwater and sea. Mangroves function as nursery habitats for many organisms, providing protection and food sources for early developmental stages of crustaceans and fish, helping to maintain adjacent marine stocks. Mangroves in São Tomé and Príncipe remain poorly studied. This study addresses the importance of a small mangrove stand to ichthyofauna. The main goal of the study was to describe the fish assemblages of the Praia Salgada mangrove stand on Príncipe Island, and assess if variations in the season, tide, and mangrove zone affected fish distribution. Fish assemblages were sampled with mosquito nets during the rainy and dry seasons, and neap and spring tides, while environmental parameters such as water depth, temperature, pH, and salinity measurements were taken. The characteristics of the water column were affected by a sandbank that developed between sampling seasons, impacting on the dynamics of the water and biological exchanges between the mangrove stand and the adjacent marine environment. The study identified 14 fish species occurring in the Praia Salgada mangrove stand from a total of 772 specimens caught. Five species were recorded for the first time as occurring in the country’s mangrove areas, namely Caranx latus, Ethmalosa fimbriata, Mugil curema, Gobioides cf. africanus, and Citharus cf. linguatula. Most of the reported species are of commercial interest, and were predominantly juveniles, suggesting that the mangrove ecosystem provides a nursery function for several species. Some species revealed preferences for either the upper or lower part of the mangrove forest. The size of fish sampled tended to be bigger during the dry season, especially for the Mugilidae, Aplocheilichthys spilauchen and Gobiidae groups. E. fimbriata and Eucinostomus melanopterus displayed similar sizes between seasons. The average quantity of fish caught per day in the rainy season was three times higher than in the dry season. The fish species distribution in the mangrove stand varied significantly according to the season and mangrove zone. The overall results suggest that the Praia Salgada mangrove stand provides a nursery function for several of the studied fish species.


2013 ◽  
Vol 25 (1) ◽  
pp. 54-67 ◽  
Author(s):  
Igor David da Costa ◽  
Carlos Edwar de Carvalho Freitas

INTRODUCTION: The floodplains of the large Amazonian rivers are very productive as a result of seasonal fluctuations of water levels. This favors the fishes as they are provided with a wide range of habitats and food resources; AIM: In this study, we identified the trophic structure of fish assemblages in the upper river Urucu area (State of Amazonas - Brazil), observing seasonal changes determined by the hydrological cycle; Methods: Samples were collected with the aid of gillnets, during the flood season (April/2008) and the dry season (August/2008) in areas upstream and downstream of ports of the Urucu river within the municipality of Coari, Amazonas, Brazil; RESULTS: 902 individuals of seven orders, 23 families and 82 species were collected. Fishes were more abundant in the dry season than in the flood season, and the piscivores and carnivores (Serrasalumus rhombeus and Osteoglossum bicirrhosum) were the most significant trophic categories in the dry season whereas piscivores and insectivores (Serrasalumus rhombeus, Bryconops alburnoides and Dianema urostriatum) were more abundant in the flood season. The trophic diversity, dominance and evenness were very similar in all sampling periods and show lower values than taxonomic index patterns, except for the trophic dominance in the dry season. Taxonomic diversity and dominance were higher in the flood season if compared to the dry season, but figures were quite uniform and there were no great discrepancies between seasons. CONCLUSION: We found through our studies that the dry and flood seasons work as regulatory factors of abundance of fishes of certain trophic categories in the Urucu river, what can be possibly explained by the availability of resources and the food spectrum of each category.


2019 ◽  
Author(s):  
N. J. Waltham ◽  
J. Schaffer

AbstractEfforts to protect and restore tropical wetlands impacted by feral pigs (Sus scrofa) in northern Australia have more recently included exclusion fences, an abatement response proposing fences improve wetland condition by protecting habitat for fish production and water quality. Here we tested: 1) whether the fish assemblage are similar in wetlands with and without fences; and 2) whether specific environmental processes influence fish composition differently between fenced and unfenced wetlands. Twenty-one floodplain and riverine wetlands in the Archer River catchment (Queensland) were surveyed during post-wet (June-August) and late-dry season (November-December) in 2016, 2017 and 2018, using a fyke soaked overnight (~14-15hrs). A total of 6,353 fish representing twenty-six species from 15 families were captured. There were no multivariate differences in fish assemblages between seasons, years and for fenced and unfenced wetlands (PERMANOVA, Pseduo-F <0.58, P<0.68). Late-dry season fish were considerably smaller compared to post-wet season: a strategy presumably to maximise rapid disposal following rain. At each wetland a calibrated Hydrolab was deployed (between 2-4 days, with 20min logging) in the epilimnion (0.2m), and revealed distinct diel water quality cycling of temperature, dissolved oxygen and pH (conductivity represented freshwater wetlands) which was more obvious in the late-dry season survey, because of extreme summer conditions. Water quality varied among wetlands, in terms of the daily amplitude, and extent of daily photosynthesis recovery, which highlights the need to consider local site conditions rather than applying general assumptions around water quality conditions for these types of wetlands examined here. Though many fish access (fenced and unfenced) wetlands during wet season connection, the seasonal effect of reduced water level conditions seems to be more over-improvised compared to whether fences are installed or not, as all wetlands supported few, juvenile, or no fish species because they had dried completed regardless of whether fences were present or not.


Sign in / Sign up

Export Citation Format

Share Document