scholarly journals What are the main local drivers determining richness and fishery yields in tropical coastal fish assemblages?

2018 ◽  
Vol 35 ◽  
pp. 1-12
Author(s):  
Cynthia Diniz Souza ◽  
Vandick S. Batista ◽  
Nidia Noemi Fabré

Seasonal ecological effects caused by temperature and photoperiod are typically considered minimal in the tropics. Nevertheless, annual climate cycles may still influence the distribution and abundance of tropical species. Here, we investigate whether seasonal patterns of precipitation and wind speed influence the structure of coastal fish assemblages and fishing yields in northeast Brazil. Research trips were conducted during the rainy and dry seasons using commercial boats and gear to sample the fish community. Diversity was analyzed using abundance Whittaker curves, diversity profiles and the Shannon index. Principal Component Analysis (PCA) was used to analyze associations between the abundance of species and various environmental variables related to seasonality. A total of 2,373 fish were collected, representing 73 species from 34 families – 20 of which were classified as both frequent and abundant. Species richness was greater and more equitable during the rainy season than the dry season – driven by changes in the precipitation rather than to wind speed. Species diversity profiles were slightly greater during the rainy season than the dry season, but this difference was not statistically significant. Using PCA was identified three groups of species: the first associated with wind speed, the second with precipitation, and the third with a wide range of sampling environments. This latter group was the largest and most ecologically heterogeneous. We conclude that tropical coastal fish assemblages are largely influenced by local variables, and seasonally mediated by annual changes related to precipitation intensity and wind speed, which in turn influences fishery yields.

2018 ◽  
Vol 35 ◽  
pp. 1-12 ◽  
Author(s):  
Cynthia Diniz Souza ◽  
Vandick S. Batista ◽  
Nidia Noemi Fabré

Seasonal ecological effects caused by temperature and photoperiod are typically considered minimal in the tropics. Nevertheless, annual climate cycles may still influence the distribution and abundance of tropical species. Here, we investigate whether seasonal patterns of precipitation and wind speed influence the structure of coastal fish assemblages and fishing yields in northeast Brazil. Research trips were conducted during the rainy and dry seasons using commercial boats and gear to sample the fish community. Diversity was analyzed using abundance Whittaker curves, diversity profiles and the Shannon index. Principal Component Analysis (PCA) was used to analyze associations between the abundance of species and various environmental variables related to seasonality. A total of 2,373 fish were collected, representing 73 species from 34 families – 20 of which were classified as both frequent and abundant. Species richness was greater and more equitable during the rainy season than the dry season – driven by changes in the precipitation rather than to wind speed. Species diversity profiles were slightly greater during the rainy season than the dry season, but this difference was not statistically significant. Using PCA was identified three groups of species: the first associated with wind speed, the second with precipitation, and the third with a wide range of sampling environments. This latter group was the largest and most ecologically heterogeneous. We conclude that tropical coastal fish assemblages are largely influenced by local variables, and seasonally mediated by annual changes related to precipitation intensity and wind speed, which in turn influences fishery yields.


Jurnal MIPA ◽  
2014 ◽  
Vol 3 (1) ◽  
pp. 58 ◽  
Author(s):  
Farid Mufti ◽  
As'ari .

Penelitian ini mengkaji lebih dalam kondisi angin dan kelembapan udara pada saat musim hujan dan musim kemarau di Manado dengan menggunakan data di lapisan permukaan dan data udara atas dari Stasiun Meteorologi Sam Ratulangi Manado. Tujuan utama dari penelitian ini adalah mendapatkan hubungan antara kondisi angin dan kelembapan lapisan atas terhadap lapisan permukaan, sehingga dapat memprakirakan kondisi angin dan kelembapan lapisan permukaan dengan berdasarkan keadaan lapisan atas. Metode yang digunakan adalah mengkomponenkan angin dalam arah utara-selatan dan timur-barat, selanjutnya mencari keterkaitan dengan menggunakan teknik korelasi. Hasil penelitian ini menunjukkan pada saat musim hujan angin pada lapisan 1500 m dan angin di lapisan permukaan memiliki arah yang sama dan saling menguatkan untuk komponen timur-barat (zonal) dengan koefisien korelasi r=0,56, sedangkan pada saat musim kemarau angin pada lapisan 1500 m dan angin di lapisan permukaan memiliki arah yang sama dan saling menguatkan untuk komponen utara-selatan (meridional) dengan koefisien korelasi r=0,45. Keterkaitan yang cukup kuat antara angin dengan kelembapan terjadi pada komponen V (meridional) yaitu, pada saat musim hujan, semakin besar kecepatan angin komponen negatif (utara) semakin besar pula kelembapan udara di lapisan permukaan, dengan koefisien korelasi benilai positif r=0.40. Pada saat musim kemarau, semakin besar kecepatan angin komponen positif (selatan) semakin kecil kelembapan udara di lapisan permukaan, dengan koefisien korelasi bernilai negatif r=— 0,48.This study examined the wind and humidity condition in the rainy season and dry season in Manado by using the data in surface layer and upper air data from the Sam Ratulangi Meteorological Station. The primary objective of this study was to find the relationship between wind condition and upper layer humidity to surface layer, using correlation technique, in order to predict wind condition and humidity of the surface layer based on the condition of the upper layer. The results showed that, during the rainy season, the wind at layer 1500 m and surface layer had the same direction and mutually reinforced for the east-west component (zonal) with correlation coefficient r=0.56, whereas during the dry season, wind at layer 1500 m and at surface layer had the same direction and mutually reinforced for the north-south component (meridional) with correlation coefficient r=0.45. A relationship between wind and humidity was found at V component (meridional), which was, at rainy season, the higher the wind speed of negative component (north) the higher the humidity at surface layer with positive correlation coefficient r=0.40. At dry season, the higher the wind speed of positive component (south), the lower the humidity at the surface layer, with negative correlation coefficient r=—0.48.


2011 ◽  
Vol 71 (4) ◽  
pp. 833-843 ◽  
Author(s):  
WAC. Chiba ◽  
MD. Passerini ◽  
JAF. Baio ◽  
JC. Torres ◽  
JG. Tundisi

The spatial and temporal occurrence of heavy metals (Al, Cd, Pb, Zn, Cr, Co, Cu, Fe, Mn and Ni) in water and sediment samples was investigated in a sub-basin in the southeast of Brazil (São Carlos, SP). All samples were analysed using the USEPA adapted metal method and processed in an atomic absorption spectrophotometer. The discriminant analysis demonstrated that there are significant seasonal differences of metal distribution in the water data, but there are no differences to sediment. The basin studied has high levels of contamination by toxic metals in superficial water and sediment. The superficial water, in the rainy season, presented high levels of Cr, Ni, Pb and Cd, while in the dry season it presented high levels of Zn and Ni. The Principal Component Analysis demonstrated that the season has a huge influence on the levels, types and distribution of metals found in water. The source of contamination was probably diffuse, due to products such as batteries and fluorescent lamps, whose dump discharge can contaminate the bodies of water in the region in the rainy season. Due to fires from the harvest of sugar cane, high levels of Zn were found into the environment, in the dry season.


Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 851
Author(s):  
Jamilly N. Muniz ◽  
Klinger G. Duarte ◽  
Fábio H. Ramos Braga ◽  
Neuriane S. Lima ◽  
Darlan F. Silva ◽  
...  

Watersheds are defined as a set of lands where water drainage occurs through rivers and their tributaries. A large quantity of water resources exist in the state of Maranhão, Brazil, where rivers and their basins must meet environmental quality standards defined by the limits set out in national environmental council (CONAMA) legislation 357/05 for physicochemical and microbiological parameters, including parasites. Multivariate statistical techniques were applied to study the temporal and spatial variations in water quality of a segment of the Pindaré River. The data set included nine parameters for three sampling points over eleven months. Principal component analysis grouped the monitored sampling points into four clusters and identified electrical conductivity, temperature, total dissolved solids (TDS), pH, salinity, and Escherichia coli as being associated with the dry season and nitrite, nitrate, and turbidity as being associated with the rainy season. Three principal components explained 83.80% of the data variance during the rainy and dry seasons. The evaluated correlations indicated that during the rainy season, nitrite (~0.18 mg L−1) and turbidity (~46.00 NTU) levels were the highest, but pH was at its lowest (~6.61). During the dry season, TDS (~155.00 mg L−1) and pH (~8.10) were highest, and E. coli bacteria was more abundant.


2013 ◽  
Vol 25 (1) ◽  
pp. 54-67 ◽  
Author(s):  
Igor David da Costa ◽  
Carlos Edwar de Carvalho Freitas

INTRODUCTION: The floodplains of the large Amazonian rivers are very productive as a result of seasonal fluctuations of water levels. This favors the fishes as they are provided with a wide range of habitats and food resources; AIM: In this study, we identified the trophic structure of fish assemblages in the upper river Urucu area (State of Amazonas - Brazil), observing seasonal changes determined by the hydrological cycle; Methods: Samples were collected with the aid of gillnets, during the flood season (April/2008) and the dry season (August/2008) in areas upstream and downstream of ports of the Urucu river within the municipality of Coari, Amazonas, Brazil; RESULTS: 902 individuals of seven orders, 23 families and 82 species were collected. Fishes were more abundant in the dry season than in the flood season, and the piscivores and carnivores (Serrasalumus rhombeus and Osteoglossum bicirrhosum) were the most significant trophic categories in the dry season whereas piscivores and insectivores (Serrasalumus rhombeus, Bryconops alburnoides and Dianema urostriatum) were more abundant in the flood season. The trophic diversity, dominance and evenness were very similar in all sampling periods and show lower values than taxonomic index patterns, except for the trophic dominance in the dry season. Taxonomic diversity and dominance were higher in the flood season if compared to the dry season, but figures were quite uniform and there were no great discrepancies between seasons. CONCLUSION: We found through our studies that the dry and flood seasons work as regulatory factors of abundance of fishes of certain trophic categories in the Urucu river, what can be possibly explained by the availability of resources and the food spectrum of each category.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Sevidzem S. Lendzele ◽  
Mavoungou J. François ◽  
Zinga-Koumba C. Roland ◽  
Koumba A. Armel ◽  
Gérard Duvallet

The rangelands of the Vina Division on the Adamawa Plateau are densely infested with Stomoxyinae, but little is known about their species composition and ecology. A trap-transect survey was carried out in three villages: Galim, Mbidjoro, and Velambai, using Nzi (n = 3), Vavoua (n = 3), and Biconical (n = 3) traps, all baited with octenol. Three traps of each trap type were set in each of the study villages, and collections were carried out daily. In total, 3,762 Stomoxys spp. were collected from October 2016 to June 2017 and identified using standard keys into five species: Stomoxys niger niger, S. calcitrans, S. niger bilineatus, S. omega, and S. xanthomelas. Galim recorded the highest apparent density of stomoxyines (30 stomoxyines/trap/day) with a statistically significant difference (p<0.05). The Vavoua trap was an ideal tool for Stomoxyinae collection. Stomoxyines abundantly occurred at the end of the dry season (March 2017) and beginning of the rainy season (May 2017). The monthly rainfall positively influenced monthly ADTs of Stomoxyinae. Their diurnal biting activity was bimodal in the rainy season and unimodal in the dry season. The daily activity peak was between 14 h and 16 h with a mean temperature of 31°C, a mean wind speed of 1.5 m/s, and a mean humidity of 50%. The daily trap catch was positively influenced by temperature and wind speed but negatively influenced by rainfall and air humidity. Weather variables influenced Stomoxys spp. monthly and daily ADTs.


2019 ◽  
Vol 11 (10) ◽  
pp. 1161 ◽  
Author(s):  
Flávia de Souza Mendes ◽  
Daniel Baron ◽  
Gerhard Gerold ◽  
Veraldo Liesenberg ◽  
Stefan Erasmi

Mapping vegetation types through remote sensing images has proved to be effective, especially in large biomes, such as the Brazilian Cerrado, which plays an important role in the context of management and conservation at the agricultural frontier of the Amazon. We tested several combinations of optical and radar images to identify the four dominant vegetation types that are prevalent in the Cerrado area (i.e., cerrado denso, cerradão, gallery forest, and secondary forest). We extracted features from both sources of data such as intensity, grey level co-occurrence matrix, coherence, and polarimetric decompositions using Sentinel 2A, Sentinel 1A, ALOS-PALSAR 2 dual/full polarimetric, and TanDEM-X images during the dry and rainy season of 2017. In order to normalize the analysis of these features, we used principal component analysis and subsequently applied the Random Forest algorithm to evaluate the classification of vegetation types. During the dry season, the overall accuracy ranged from 48 to 83%, and during the dry and rainy seasons it ranged from 41 up to 82%. The classification using Sentinel 2A images during the dry season resulted in the highest overall accuracy and kappa values, followed by the classification that used images from all sensors during the dry and rainy season. Optical images during the dry season were sufficient to map the different types of vegetation in our study area.


2021 ◽  
Vol 20 (2) ◽  
pp. 1-10
Author(s):  
Nguyen Thanh Giao ◽  
◽  
Huynh Thi Hong Nhien ◽  
Phan Kim Anh ◽  
◽  
...  

This study assessed groundwater quality in Can Tho city, Vietnam using groundwater quality index (GWQI), principal component analysis (PCA), and cluster analysis (CA). Groundwater samples were collected in April (dry season) and October (rainy season) in 2019 and then analyzed for thirteen parameters: pH, color, total hardness, chloride, sulfate, chemical oxygen demand, magnesium, total iron, nitrate, arsenic, lead, mercury, and coliforms. The results showed that the values of these parameters were mainly within the Vietnamese regulations on groundwater quality, except for coliform density. Computed GWQI values in all monitoring sites were lower than 50 and suitable for potable purposes. The GWQI values in the dry season were slightly higher than in the rainy season because of higher concentrations of Cl-, SO42-, COD, As, Pb, and coliforms in the southeast of Can Tho. The results of CA revealed that 27 monitoring sites can be divided into nine clusters in the dry season and five clusters in the rainy season, which means that more noticeable spatial variation in groundwater quality occurred in the dry season. The PCA results can explain 63.4% and 73.9% of the total variation in the dry season via 4PCs and in the rainy season via 3PCs, respectively. It also indicated that this water resource could be affected by different sources such as industrial and agricultural activities, domestic wastewaters, and saltwater intrusion. These findings can be useful for policymakers in assessing current groundwater status and recognizing threats to its quality, and then developing long-term management policy.


Author(s):  
Maria Alexandra Endara ◽  
Demián Hinojosa-Garró

Pindo Grande River water quality was analyzed during rainy seasons of 2014 and 2017 and dry seasons of 2015 and 2016. Specimens were collected using surber net, kick net and manual stone collection, from five different sites along the river. In the laboratory, specimens were identified to the lowest possible taxonomic level. Taxon richness, abundance, diversity, trophic niches, and Biological Monitoring Working Party for Colombia (BMWP/Col) index were assessed. A total of 1,695 specimens belonging to 95 taxa were collected, including 57 taxa in rainy seasons and 38 taxa in dry seasons. Class Insecta was the most abundant (98.6%). Richness was highest (3,427) at M1000 collection sites in rainy and dry seasons and varied from moderate to high (13–35) at other sites. All sampling sites had medium diversity, and organisms belonged to three trophic categories: herbivores, detritivores, and predators. Environmental water quality was medium at most sites (BMWP/Col = 102–150). All sites exhibited good conservation status (BMWP/Col = 192–152) in the rainy season; only two sites presented medium conservation status (BMWP/col = 93–67) in the dry season. Principal component analysis indicated that main variables associated with sites were NO3 and COD in upstream areas in the rainy season and O2 in the dry season. Downstream areas were grouped based on depth and width of the river in the rainy season and on pH, PO4, and conductivity in the dry season. According to analysis, the Pindo Grande River has preserved epibenthic communities; it is an oxygenated stream, but its habitats have been gradually affected by anthropogenic activities.


2003 ◽  
Vol 28 (3) ◽  
pp. 258-266 ◽  
Author(s):  
Gilmar S. Gomes ◽  
Shiou P. Huang ◽  
Juvenil E. Cares

Temporal (monthly in three fields for 12 months) and spatial (once in 23 fields during March-April) samplings were conducted in the major soybean (Glycine max)-growing region of the Brazilian Federal District. Fifty-three nematode genera were found in both samplings, but 13 were detected only by the temporal sampling, and one only by the spatial sampling. Fifty-three percent were plant-parasites, 35% were bacterivores, and about 12% were fungivores, predators and omnivores constituted the community that was dominated by the genera Helicotylenchus (40% of total abundance), Acrobeles (15%), Cephalobus (7.6%), Meloidogyne(5.6%) and Pratylenchus (4.9%). Heterodera glycines was not found in this study. There were no differences in ten ecological measurements [Ds, H', Es, T, FF/BF, (FF+BF)/PP, MI, PPI, mMI, and Dorylaimida (%)] between the two sampling types, but differences in indexes d and J'. Plant parasite populations dropped at the end of the crop cycle, remained at low levels during the dry season and the seedling period, then increased again in the crop-growing season. Fungivores maintained their low populations throughout the year, increasing only in June and July, the post-harvest period, when soil fungi decomposed root tissue. The population of bacterivores slightly declined during the dry season and the initial rainy season, but peaked in the middle of the rainy season, apparently associated with soil humidity. In the five most abundant nematodes, those of Acrobeles and Pratylenchus were more populous in wet soils, Cephalobus and Meloidogyne adapted well in dry soils, but Helicotylenchus survived abundantly in a wide range of soil moisture.


Sign in / Sign up

Export Citation Format

Share Document