Effect of Chronic Treatment with ICI D7114, a Selective β3-Adrenoceptor Agonist, on Macronutrient Selection and Brown Adipose Tissue Thermogenesis in Sprague-Dawley Rats

1994 ◽  
Vol 75 (3-4) ◽  
pp. 166-169 ◽  
Author(s):  
Eriika Santti ◽  
Taina Rouvari ◽  
Juha Rouru ◽  
Risto Huupponen ◽  
Markku Koulu
2014 ◽  
Vol 306 (6) ◽  
pp. R394-R400 ◽  
Author(s):  
Mazher Mohammed ◽  
Youichirou Ootsuka ◽  
William Blessing

Body temperature increases when individuals experience salient, emotionally significant events. There is controversy concerning the contribution of nonshivering thermogenesis in brown adipose tissue (BAT) to emotional hyperthermia. In the present study we compared BAT, core body, and brain temperature, and tail blood flow, simultaneously measured, to determine whether BAT thermogenesis contributes to emotional hyperthermia in a resident Sprague-Dawley rat when an intruder rat, either freely-moving or confined to a small cage, is suddenly introduced into the cage of the resident rat for 30 min. Introduction of the intruder rat promptly increased BAT, body, and brain temperatures in the resident rat. For the caged intruder these temperature increases were 1.4 ± 0.2, 0.8 ± 0.1, 1.0 ± 0.1°C, respectively, with the increase in BAT temperature being significantly greater ( P < 0.01) than the increases in body and brain. The initial 5-min slope of the BAT temperature record (0.18 ± 0.02°C/min) was significantly greater ( P < 0.01) than the corresponding value for body (0.10 ± 0.01°C/min) and brain (0.09 ± 0.02°C/min). Tail artery pulse amplitude fell acutely when the intruder rat was introduced, possibly contributing to the increases in body and brain temperature. Prior blockade of β3 adrenoceptors (SR59230A 10 mg/kg ip) significantly reduced the amplitude of each temperature increase. Intruder-evoked increases in BAT temperature were similar in resident rats maintained at 11°C for 3 days. In the caged intruder situation there is no bodily contact between the rats, so the stimulus is psychological rather than physical. Our study thus demonstrates that BAT thermogenesis contributes to increases in body and brain temperature occurring during emotional hyperthermia.


Author(s):  
Soulmaz Shorakae ◽  
Eveline Jona ◽  
Courten Barbora de ◽  
Gavin Lambert ◽  
Elisabeth Lambert ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
L. Van Schaik ◽  
C. Kettle ◽  
R. Green ◽  
W. Sievers ◽  
M. W. Hale ◽  
...  

AbstractThe role of central orexin in the sympathetic control of interscapular brown adipose tissue (iBAT) thermogenesis has been established in rodents. Stimulatory doses of caffeine activate orexin positive neurons in the lateral hypothalamus, a region of the brain implicated in stimulating BAT thermogenesis. This study tests the hypothesis that central administration of caffeine is sufficient to activate BAT. Low doses of caffeine administered either systemically (intravenous [IV]; 10 mg/kg) and centrally (intracerebroventricular [ICV]; 5–10 μg) increases BAT thermogenesis, in anaesthetised (1.5 g/kg urethane, IV) free breathing male rats. Cardiovascular function was monitored via an indwelling intra-arterial cannula and exhibited no response to the caffeine. Core temperature did not significantly differ after administration of caffeine via either route of administration. Caffeine administered both IV and ICV increased neuronal activity, as measured by c-Fos-immunoreactivity within subregions of the hypothalamic area, previously implicated in regulating BAT thermogenesis. Significantly, there appears to be no neural anxiety response to the low dose of caffeine as indicated by no change in activity in the basolateral amygdala. Having measured the physiological correlate of thermogenesis (heat production) we have not measured indirect molecular correlates of BAT activation. Nevertheless, our results demonstrate that caffeine, at stimulatory doses, acting via the central nervous system can increase thermogenesis, without adverse cardio-dynamic impact.


Author(s):  
Ellen Paula Santos da Conceição Furber ◽  
Clarissa M.D. Mota ◽  
Edward Veytsman ◽  
Shaun F. Morrison ◽  
Christopher J. Madden

Systemic administration of dopamine (DA) receptor agonists leads to falls in body temperature. However, the central thermoregulatory pathways modulated by DA have not been fully elucidated. Here we identified a source and site of action contributing to DA's hypothermic action by inhibition of brown adipose tissue (BAT) thermogenesis. Nanoinjection of the type 2 and type 3 DA receptor (D2R/D3R) agonist, 7-OH-DPAT, in the rostral raphe pallidus area (rRPa) inhibits the sympathetic activation of BAT evoked by cold exposure or by direct activation of NMDA receptors in the rRPa. Blockade of D2R/D3R in the rRPa with nanoinjection of SB-277011A increases BAT thermogenesis, consistent with a tonic release of DA in the rRPa contributing to inhibition of BAT thermogenesis. Accordingly, D2R are expressed in cold-activated and serotonergic neurons in the rRPa and anatomical tracing studies revealed that neurons in the posterior hypothalamus (PH) are a source of dopaminergic input to the rRPa. Disinhibitory activation of PH neurons with nanoinjection of gabazine inhibits BAT thermogenesis, which is reduced by pre-treatment of the rRPa with SB-277011A. In conclusion, the rRPa, the site of sympathetic premotor neurons for BAT, receives a tonically-active, dopaminergic input from the PH that suppresses BAT thermogenesis.


Sign in / Sign up

Export Citation Format

Share Document