Effects of caffeine ingestion on rating of perceived exertion during and after exercise: a meta-analysis

Author(s):  
M. Doherty ◽  
P. M. Smith
Nutrients ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 434 ◽  
Author(s):  
Jozo Grgic ◽  
Francisco Javier Diaz-Lara ◽  
Juan Del Coso ◽  
Michael J. Duncan ◽  
Jason Tallis ◽  
...  

The purpose of this paper was to conduct a systematic review and a meta-analysis of studies examining the acute effects of caffeine ingestion on measures of rowing performance. Crossover and placebo-controlled experiments that investigated the effects of caffeine ingestion on measures of rowing performance were included. The PEDro checklist was used to assess the methodological quality of the included studies. Seven studies of good and excellent methodological quality were included. None of the included studies examined on-water rowing. The majority of studies that were included in the meta-analysis used a 2000m rowing distance with only one using 1000m distance. Results of the main meta-analysis indicated that caffeine enhances performance on a rowing ergometer compared to placebo with a mean difference of −4.1 s (95% confidence interval (CI): −6.4, −1.8 s). These values remained consistent in the analysis in which the study that used a 1000m distance was excluded (mean difference: −4.3 s; 95% CI: −6.9, −1.8 s). We also found a significant increase in mean power (mean difference: 5.7 W; 95% CI: 2.1, 9.3 W) and minute ventilation (mean difference: 3.4 L/min; 95% CI: 1.7, 5.1 L/min) following caffeine ingestion. No significant differences between caffeine and placebo were found for the rating of perceived exertion, oxygen consumption, respiratory exchange ratio, and heart rate. This meta-analysis found that acute caffeine ingestion improves 2000m rowing ergometer performance by ~4 s. Our results support the use of caffeine pre-exercise as an ergogenic aid for rowing performance.


Nutrients ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1422 ◽  
Author(s):  
Arthur de Azevedo ◽  
Mauro Guerra ◽  
Leonardo Caldas ◽  
Lucas Guimarães-Ferreira

Mixed martial arts (MMA) is a combat sport where competitors utilize strikes (punches, kicks, knees, and elbows) and submission techniques to defeat opponents in a cage or ring. The aim of this study was to investigate the effect of acute caffeine ingestion on punching performance by professional MMA athletes. The study used a double-blind, counterbalanced, crossover design. Eleven professional MMA competitors (27.6 ± 4.3 years and 83.5 ± 7.8 kg of body weight) ingested a dose of caffeine (5 mg·kg−1) or placebo 60 min prior to three sets of punching. Each set consisted of 15 s, at which participants were asked to perform straight punches with maximum strength and frequency with his dominant arm. After each set, a 45 s recovery time was applied. Using a force transducer attached to a cushioned plate, the punch frequency, and mean and maximal punch force was measured. The readiness to invest in both physical (RTIPE) and mental (RTIME) effort was assessed prior to the protocol, and the rating of perceived exertion (RPE) was recorded after. Caffeine ingestion did not result in increased punching frequency, mean and maximum punch force, RTIPE, RTIME, and RPE when compared to the placebo condition. Based on these results, acute caffeine ingestion did not improve punching performance in professional MMA athletes.


2020 ◽  
Vol 15 (3) ◽  
pp. 298-308 ◽  
Author(s):  
Pedro L. Valenzuela ◽  
Javier S. Morales ◽  
Adrián Castillo-García ◽  
Alejandro Lucia

Purpose: To determine the acute effects of ketone supplementation on exercise performance (primary outcome) and physiological and perceptual responses to exercise (secondary outcomes). Methods: A systematic search was conducted in PubMed, Web of Science, and SPORTDiscus (since inception to July 21, 2019) to find randomized controlled trials assessing the effects of acute ketone supplementation compared with a drink containing no ketones (ie, control intervention). The standardized mean difference (Hedges g) between interventions and 95% confidence interval (CI) were computed using a random-effects model. Results: Thirteen studies met all inclusion criteria. No significant differences were observed between interventions for overall exercise performance (Hedges g = −0.05; 95% CI, −0.30 to 0.20; P = .68). Subanalyses revealed no differences between interventions when analyzing endurance time-trial performance (g = −0.04; 95% CI, −0.35 to 0.28; P = .82) or when assessing the separate effects of supplements containing ketone esters (g = −0.07; 95% CI, −0.38 to 0.24; P = .66) or salts (g = −0.02; 95% CI, −0.45 to 0.41; P = .93). All studies reported increases in plasma ketone concentration after acute ketone supplementation, but no consistent effects were reported on the metabolic (plasma lactate and glucose levels), respiratory (respiratory exchange ratio, oxygen uptake, and ventilatory rate), cardiovascular (heart rate), or perceptual responses to exercise (rating of perceived exertion). Conclusions: The present findings suggest that ketone supplementation exerts no clear influence on exercise performance (from sprints to events lasting up to ∼50 min) or metabolic, respiratory, cardiovascular, or perceptual responses to exercise. More research is needed to elucidate if this strategy could provide ergogenic effects on other exercise types (eg, ultraendurance exercise).


Author(s):  
Hongli Yu ◽  
Chen Sun ◽  
Bo Sun ◽  
Xiaohui Chen ◽  
Zhijun Tan

The number of overweight (OW) and obese (OB) children, adolescents, and adults has increased globally. Exercise intensity, both actual and perceived, is a significant factor in a variety of health-related investigations and rehabilitation trainings. Despite this, literature on the connection between actual exercise intensity and the rating of perceived exertion (RPE) in overweight and obese populations is lacking. A systematic review, meta-analysis, combined analysis of variance (Brown–Forsythe ANOVA), and Spearman correlation were performed to fill this gap. After preliminary assessments, ten studies were classified as having a low risk of bias and a degree of heterogeneity (I2 = 34%; p = 0.05). The RPE scores (F = 0.032; p = 0.859), physiological index (percentage of maximal heart rate (%HRmax) (F = 0.028; p = 0.869), and percentage of maximal oxygen uptake (%VO2max) (F = 2.434; p = 0.136) demonstrated consistency without being significantly different between the normal weight (NW) and OW/OB groups. The RPE scores varied by age (NW (coefficient values) = 0.677 ***, OW = 0.585 **), as well as by indoor temperature (OW only, coefficient values = 0.422 *), body mass index (NW (coefficient values) = 0.516 **, OW = 0.580 **), and test time (NW only, coefficient values = 0.451 *). We conclude that RPE is appropriate for the following OW and OB people: (1) those who are older than 21.5 (the lowest age in the group of ≥18) years old and younger than 58.6 (the highest age in the group of ≥18) years old, without any other diseases, and (2) those who engage in low-intensity exercise while maintaining a standard indoor temperature. Future studies may address alternative techniques for increasing the reliability of longitudinal comparisons and gender comparisons, as well as investigate other possible confounding factors.


Author(s):  
Jennifer N. Ahrens ◽  
Lisa K. Lloyd ◽  
Sylvia H. Crixell ◽  
John L. Walker

People of all ages and fitness levels participate regularly in aerobic-dance bench stepping (ADBS) to increase fitness and control body weight. Any reasonable method for enhancing the experience or effectiveness of ADBS would be beneficial. This study examined the acute effects of a single dose of caffeine on physiological responses during ADBS in women. When compared with a placebo, neither a 3- nor a 6-mg/kg dose of caffeine altered physiological responses or rating of perceived exertion (RPE) in 20 women (age 19–28 y) of average fitness level, not habituated to caffeine, while they performed an ADBS routine. Since neither dose of caffeine had any effect on VO2, Vco2, minute ventilation, respiratory-exchange ratio, rate of energy expenditure, heart rate, or RPE during ADBS exercise, it would not be prudent for a group exercise leader to recommend caffeine to increase energy cost or decrease perception of effort in an ADBS session. Furthermore, caffeine ingestion should not interfere with monitoring intensity using heart rate or RPE during ADBS.


2021 ◽  
pp. 194173812199871
Author(s):  
Raphael Einsfeld Simões Ferreira ◽  
Rafael Leite Pacheco ◽  
Carolina de Oliveira Cruz Latorraca ◽  
Rachel Riera ◽  
Ricardo Guilherme Eid ◽  
...  

Context: Caffeine is 1 of the most popular supplements consumed by athletes, and the evidence for improving soccer performance remains limited. Objective: To investigate and update the effects (benefits and harms) of caffeine to improve performance on soccer players. Data Sources: Electronic search in Medline (via PubMed), CENTRAL, Embase, SPORTDiscus, and LILACS, from inception to March 28, 2020. Study Selection: Randomized clinical trials (RCTs) assessing the effects of caffeine on the performance of soccer players. Study Design: Systematic review with meta-analysis. Level of Evidence: Level 1. Data Extraction: Data extraction was conducted independently by 2 authors using a piloted form. We assessed methodological quality (Cochrane risk-of-bias [RoB] table) and the certainty of the evidence (GRADE [Grading of Recommendations Assessment, Development and Evaluation] approach). Results: Sixteen RCTs were included. Overall methodological quality was classified as unclear to low risk of bias. When assessing aerobic endurance, meta-analyses did not demonstrate the differences between caffeine and placebo (mean difference [MD], 44.9 m; 95% confidence interval [CI], −77.7 to 167.6). Similarly, no difference was observed during time to fatigue test (MD, 169.8 seconds; 95% CI, −71.8 to 411.6). Considering anaerobic power, meta-analyses also did not find differences for vertical jump (MD, 1.01 cm; 95% CI, −0.68 to 2.69) and repeated sprint tests (MD, −0.02 seconds; 95% CI, −0.09 to 0.04), as well as reaction time agility test (MD, 0.02 seconds; 95% CI, −0.01 to 0.04) and rating of perceived exertion (MD, 0.16 points; 95% CI, −0.55 to 0.87). Regarding safety, a few minor adverse events were reported. Based on the GRADE approach, the certainty of this evidence was classified as very low to low. Conclusions: We found no significant improvement in soccer-related performance with caffeine compared with placebo or no intervention. However, caffeine appears to be safe.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Darren Paul ◽  
Paul Read ◽  
Abdulaziz Farooq ◽  
Luke Jones

Abstract Background Subjective monitoring of rate of perceived exertion is common practice in many sports. Typically, the information is used to understand the training load and at times modify forthcoming sessions. Identifying the relationship between the athlete and coach’s interpretation of training would likely further benefit understanding load management. The aim of this systematic review was to evaluate the relationship between coaches’ rating of intended exertion (RIE) and/or rating of observed exertion (ROE) and athletes’ reported rating of perceived exertion (RPE). Methods The review was undertaken in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. We conducted a search of Medline, Google Scholar, Science Direct, SPORTDiscus, and Web of Science databases. We assessed the correlation between coach-reported RIE and/or ROE and RPE. Assessment for risk of bias was undertaken using the Quality Appraisal for Reliability Studies (QAREL) checklist. Inclusion criteria were (1) male and/or female individuals, (2) individual and/or team sport active participants, and (3) original research article published in the English language. Results Data from 19 articles were found to meet the eligibility criteria. A random effect meta-analysis based on 11 studies demonstrated a positive association of player vs. coach rating of RIE (r = 0.62 [95% CI 0.5 to 0.7], p < 0.001). The pooled correlation from 7 studies of player vs. coach rating on ROE was r = 0.64 95% CI (0.5 to 0.7), p < 0.001. Conclusion There was a moderate to high association between coach RIE and/or ROE and athlete-reported RPE and this association seems to be influenced by many factors. The suggestions we present in this review are based on imploring practitioners to consider a multi-modal approach and the implications of monitoring when using RPE. Trial Registration CRD42020193387


2009 ◽  
Vol 4 (2) ◽  
pp. 244-253 ◽  
Author(s):  
Michael J. Duncan ◽  
Mark Lyons ◽  
Joanne Hankey

Purpose:This study examined the placebo effect of caffeine on number of repetitions (reps), rating of perceived exertion (RPE), blood pressure (BP), and peak heart rate (PHR) during resistance-training exercise with repetitions (reps) performed to volitional failure.Methods:Following determination of 1-rep maximum in single-leg leg extension, 15 males performed reps to failure at 60% 1-RM in 3 conditions: control, perceived caffeine condition, and perceived placebo condition presented in a randomized order. Participants were informed they would ingest 250 mL of solution that contained either 3 mg·kg−1 caffeine or 3 mg·kg−1 placebo 1 h before each exercise trial. A deceptive protocol was employed and subjects consumed a placebo solution in both conditions. During each condition, total reps, RPE for the active muscle and overall body, and PHR were recorded.Results:Subjects completed 2 more reps when they perceived they had ingested caffeine. RPE was significantly (P = .04) lower in the perceived caffeine and control conditions and RPE for the active muscle was significantly higher across all conditions compared with RPE for the overall body. No substantial differences were evident in PHR across conditions.Conclusions:Results of this study are similar to studies of actual caffeine ingestion. However, the perception of consuming a substance that purportedly enhances performance is sufficient enough to enable individuals to complete a greater number of reps to failure during short-term resistance exercise.


2021 ◽  
Author(s):  
Thomas A Deshayes ◽  
Timothee Pancrate ◽  
Eric DB Goulet

Understanding the impact of stressors on the rating of perceived exertion (RPE) is relevant from a performance and exercise adherence/participation standpoint. Athletes and recreationally active individuals dehydrate during exercise. No attempt has been made to systematically determine the impact of exercise-induced dehydration (EID) on RPE. The present meta-analysis aimed to determine the effect of EID on RPE during endurance exercise and examine the moderating effect of potential confounders using a meta-analytical approach. Data analyses were performed on raw RPE values using random-effects models weighted mean effect summaries and meta-regressions with robust standard errors, and with a practical meaningful effect set at 1 point difference between euhydration (EUH) and EID. Only controlled crossover studies measuring RPE with a Borg scale in healthy adults performing ≥ 30 min of continuous endurance exercise while dehydrating or drinking to maintain EUH were included. Sixteen studies were included, representing 147 individuals. Mean body mass loss with EUH was 0.5 ± 0.4%, compared to 2.3 ± 0.5% with EID (range 1.7 to 3.1%). Within an EID of 0.5 to 3% body mass, a maximum difference in RPE of 0.81 points (95% CI: 0.36-1.27) was observed between conditions. A meta-regression revealed that RPE increases by 0.21 points for each 1% increase in EID (95% CI: 0.12-0.31). Humidity, ambient temperature and aerobic capacity did not alter the relationship between EID and RPE. Therefore, the effect of EID on RPE is unlikely to be practically meaningful until a body mass loss of at least 3%.


Sign in / Sign up

Export Citation Format

Share Document