scholarly journals INTENSIFICATION OF RAINFED LOWLAND RICE PRODUCTION IN WEST AFRICA: PRESENT STATUS AND POTENTIAL GREEN REVOLUTION

2006 ◽  
Vol 44 (2) ◽  
pp. 232-251 ◽  
Author(s):  
Takeshi SAKURAI
JURNAL AGRICA ◽  
2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Rifki Andi Novia ◽  
Ratna Satriani

This study aimed to determine the effect of agricultural land tenure status on rainfed lowland rice production in Banyumas Regency. One of the most important factors of production affecting the production of rainfed lowland rice is the land used. This study used  survey method by taking primary data and secondary data. Primary data obtained through a list of questions that have been prepared, while secondary data obtained from the relevant agencies. The sampling method is carried out by stratified random sampling. Each stratum of the sample is drawn with a total sample of 50 farmer respondents. Data were analyzed used one-way analysis of variance (One-way ANOVA). The results of this study indicated that the amount of rainfed lowland rice production in Banyumas District showed significant difference between farmers who were not owners and farmers who own land. Non-owner farmers get an average production yield greater than those of farmers who own rainfed lowland rice in Banyumas Regency.


2020 ◽  
Vol 206 (4) ◽  
pp. 433-443 ◽  
Author(s):  
Bayuh Belay Abera ◽  
Sabine Stuerz ◽  
Kalimuthu Senthilkumar ◽  
Marc Cotter ◽  
Arisoa Rajaona ◽  
...  

2020 ◽  
Vol 14 (1) ◽  
pp. 15
Author(s):  
Antonius Kasno ◽  
Diah Setyorini ◽  
I Wayan Suastika

<p><strong>Abstrak</strong>. Beras merupakan makanan pokok bagi bangsa Indonesia dan strategis bagi keamanan pangan nasional. Produksi beras dapat ditingkatkan melalui ektensifikasi lahan, peningkatan mutu intensifikasi dan indeks pertanaman padi. Lahan sawah tadah hujan berpotensi besar untuk menjadi lahan pertanian produktif jika tingkat kesuburan tanahnya ditingkatkan melalui penerapkan pemupukan berimbang sesuai karakteristik tanahnya. Lahan sawah non irigasi seluas 3,30 juta ha, salah satunya adalah sawah tadah hujan. Pengembangan lahan sawah tadah hujan menjadi sangat relavan dengan peningkatan kebutuhan pangan nasional. Makalah ini bertujuan untuk menelaah pengelolaan lahan sawah tadah hujan untuk meningkatkan produksi padi nasional. Faktor pembatas yang sering dihadapi antara lain ketersediaan air hujan yang sulit diprediksi serta kesuburan tanah yang rendah akibat kandungan C-organik dan N-total yang rendah. Kegagalan panen dapat terjadi akibat akibat kekurangan air pada awal tanam musim hujan maupun saat menjelang panen pada musim kedua. Perbaikannya dapat dilakukan dengan tanam gogo rancah pada musim tanam pertama, dan sistem culik pada musim tanam ke dua. Pemberian bahan pembenah tanah seperti kompos jerami, pupuk kandang, <em>biochar</em> dan kapur pertanian/dolomit terutama untuk tanah yang bereaksi masam ditujukan untuk meningkatkan kesuburan tanah sebelum dilakukan pemupukan. Teknologi pemupukan berimbang yang dapat diterapkan pada lahan sawah tadah hujan, antara lain Urea 250-300 kg ha<sup>-1</sup>, SP-36 50-75 kg ha<sup>-1</sup>, dan KCl 50 kg ha<sup>-1</sup>, pemberian bahan organik minimal 2 t ha<sup>-1</sup>, serta pengembalian jerami sisa hasil panen ke dalam tanah. Pemupukan berimbang dapat meningkatkan hasil padi dari 1,8-3,5 t ha<sup>-1 </sup>menjadi 5,0-5,8 t ha<sup>-1</sup>.</p><p> </p><p><strong>Abstract</strong>. Rice is a staple food for the Indonesian people and a strategic comodity for national food security. Rice production can be increased through land extensification, improved quality of intensification and rice cropping index. Rainfed lowland rice fields could be very potentially productive for agriculture  when the level of soil fertility is improved by applying balanced fertilization that based on the soil characteristics. Non-irrigated rice field area is 3.30 million ha, including the rainfed rice fields. The development of rainfed rice fields is very relevant to the increasing national food needs. The goal of this paper is to examine the management of rainfed lowland rice fields to increase the national rice production. Some of the limiting factors are the unpredictable rainwater availability and low soil fertility due to low C-organic and N-total content. Harvesting failures could be caused by water stress at the beginning of the planting stage in the rainy season or just before harvesting in the second season. This could be prevented by planting upland scaffolding in the first planting season, and the kidnap system in the second growing season. The application of soil enhancers is intended to increase soil fertility before fertilizer application, such as straw compost, manure, biochar and agricultural lime or dolomite especially for acidic soils. Balanced fertilization technology that can be applied to rainfed lowland rice fields are Urea 250-300 kg ha<sup>-1</sup>, SP-36 50-75 kg ha<sup>-1</sup>, and KCl 50 kg ha<sup>-1</sup>, providing organic material at least 2 t ha<sup>-1</sup>, and the return of the remaining crop straw to the ground. Balanced fertilization can increase rice yield from 1.8-3.5 t ha<sup>-1</sup> to 5.0-5.8 t ha<sup>-1</sup>.</p>


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1291
Author(s):  
Nasr M. Abdou ◽  
Mohamed A. Abdel-Razek ◽  
Shimaa A. Abd El-Mageed ◽  
Wael M. Semida ◽  
Ahmed A. A. Leilah ◽  
...  

Sustainability of rice production under flooding conditions has been challenged by water shortage and food demand. Applying higher nitrogen fertilization could be a practical solution to alleviate the deleterious effects of water stress on lowland rice (Oryza sativa L.) in semi-arid conditions. For this purpose, field experiments were conducted during the summer of 2017 and 2018 seasons. These trials were conducted as split-split based on randomized complete blocks design with soil moisture regimes at three levels (120, 100 and 80% of crop evapotranspiration (ETc), nitrogen fertilizers at two levels (N1—165 and N2—200 kg N ha−1) and three lowland Egyptian rice varieties [V1 (Giza178), V2 (Giza177) and V3 (Sakha104)] using three replications. For all varieties, growth (plant height, tillers No, effective tillers no), water status ((relative water content RWC, and membrane stability index, MSI), physiological responses (chlorophyll fluorescence, Relative chlorophyll content (SPAD), and yield were significantly increased with higher addition of nitrogen fertilizer under all water regimes. Variety V1 produced the highest grain yield compared to other varieties and the increases were 38% and 15% compared with V2 and V3, respectively. Increasing nitrogen up to 200 kg N ha−1 (N2) resulted in an increase in grain and straw yields by 12.7 and 18.2%, respectively, compared with N1. The highest irrigation water productivity (IWP) was recorded under I2 (0.89 kg m−3) compared to (0.83 kg m−3) and (0.82 kg m−3) for I1 and I3, respectively. Therefore, the new applied agro-management practice (deficit irrigation and higher nitrogen fertilizer) effectively saved irrigation water input by 50–60% when compared with the traditional cultivation method (flooding system). Hence, the new proposed innovative method for rice cultivation could be a promising strategy for enhancing the sustainability of rice production under water shortage conditions.


2004 ◽  
Vol 7 (4) ◽  
pp. 406-420 ◽  
Author(s):  
Akihiko Kamoshita ◽  
Reynaldo Rodriguez ◽  
Akira Yamauchi ◽  
Len Wade

2016 ◽  
Vol 8 (1) ◽  
pp. 284-289
Author(s):  
S. Kanimoli ◽  
K. Kumar

The present study was carried out to evaluate the nitrogen fixing ability of diazotrophs isolated from the rhizosphere soils of rice which were grown in three different rice growing systems. A total of hundred and ten isolates obtained were subjected to Acetylene Reduction Assay (ARA) and ninety eight isolates recorded significant amount of nitrogenase activity in a range of 185.73 to 3794.55 nmoles of ethylene mg of protein-1 h-1. The highest nitrogenase activity was recorded by Derxia (3794.55 nmoles of ethylene mg of protein-1 h-1) isolated from Trichy (lowland). Among the three different rice production systems, isolates obtained from lowland rice (Derxia – 3794.5 nmoles of ethylene mg of protein-1 h-1) recorded higher nitrogenase activity followed by Aerobic (Pseudomonas - 2194.89 nmoles of ethylene mg of protein-1 h-1) and SRI (Azotobacter - 1971.85 nmoles of ethylene mg of protein-1 h-1) rice isolates. The results revealed marked variation in the ARA of the diazotrophic isolates obtained from lowland, SRI and Aerobic rice. The nitrogenase activity of diazotrophs from rice fields have been reported earlier but the nitrogenase activity of diazotrophs from three different rice production systems from various parts of Tamil Nadu is reported for the first time from India.


2017 ◽  
Vol 13 (1) ◽  
pp. 28-34
Author(s):  
Ram Kumar Shrestha ◽  
Sita Paudel ◽  
Samjhana Wagle ◽  
Salikram Ghimire ◽  
Deepak Yadav

Sign in / Sign up

Export Citation Format

Share Document