Odour Control for the 1990s - Hit or Miss?

1990 ◽  
Vol 4 (3) ◽  
pp. 268-273 ◽  
Author(s):  
S. J. TOOGOOD
Keyword(s):  
2021 ◽  
Author(s):  
Sandeep Mishra ◽  
Kunwar D Yadav

Abstract For in-vessel composting of garden waste, the selection of reactor is an important factor for efficient degradation. The present study evaluates working performance of rotary drum reactor (RDR) and aerated in-vessel (AIV) for composting of garden waste. 100 kg garden waste was mixed with 10 kg cow-dung slurry and 5 kg compost and feed into both the reactors for 45 days composting period. The reactors vary in their system configuration, shape and orientation, blade design, rate of aeration, odour control, leachate production and energy requirements. Rotary drum was rotated daily six times in clockwise and anti-clockwise direction and AIV was rotated daily for 3–5 minutes using motor. Rise in temperature started within 24 hours of composting and reached 65°C and 59°C on second day itself and thermophilic phase continued for 7 and 5 days for RDR and AIV respectively. Moisture content reduction after composting period was 15.25 and 18.45 %, C/N ratio was 16.14 and 13.33, TVS reduction was 23.74 and 29.78 % and CO2 evolution rate was 6.18 and 4.14 mg/g VS/day in RDR and AIV respectively. Reduction of hemicellulose, cellulose, and lignin was more in AIV. The percentage reduction of acid insoluble lignin was 36.10 and 29.01 % and the percentage reduction of acid soluble lignin was 48.85 and 43.3% in in AIV and RDR respectively after 45 days. AIV gave better performance for composting of garden waste.


2000 ◽  
Vol 41 (6) ◽  
pp. 97-106 ◽  
Author(s):  
G. Yang ◽  
J. Hobson

The benefits of a quantitative approach to odour nuisance may be thought obvious: much better value for money should be obtained from abatement measures. New works can be appropriately sited and appropriately designed. Thesebenefits are only realised however if the quantitative approach chosen is reliable. The components of possible quantitative approaches, – olfactometry – estimates of emission rates – dispersion models – quality standards, are discussed with the limitations and sources of error in each. When using a quantitative approach it is necessary to distinguish between a poor method in which the levels of error are unknown and a good method for which the levels of error can be defined. A quantitative approach should allow different methods for odour control: septicity control using chemicals, operational modifications to reduce turbulenceand covering and treatment of air, to be evaluated on a common footing.


2000 ◽  
Vol 42 (10-11) ◽  
pp. 291-298 ◽  
Author(s):  
C. J. DeGarie ◽  
T. Crapper ◽  
B. M. Howe ◽  
B. F. Burke ◽  
P. J. McCarthy

The use of anaerobic lagoons as the first pond in waste stabilization pond systems in tropical and warm-temperature climates is considered a highly cost-effective and practical way to treat municipal wastewater. These anaerobic ponds, designed with hydraulic residence times of up to six days, can effect BOD5 removals of 60 to 80%. The subsequent aerobic stabilization pond surface area is greatly reduced over systems designed without anaerobic treatment up front due to the organic load reduction occurring anaerobically. In lagoon systems with mechanical aeration, operation costs can be greatly reduced. While odour is a concern with anaerobic treatment, anaerobic ponds treating municipal wastewater can be designed to be relatively odour-free given sufficiently low wastewater sulfate concentrations. However, when sulfate concentrations are high, or when odour control or greenhouse gas emissions are significant issues, or when the wastewater is relatively high in organic strength resulting in commercial production of methane gas, anaerobic lagoons can be covered, and the biogas collected and burned both to produce energy and reduce emissions and odour. The City of Melbourne treats approximately 50% of its municipal wastewater at the Western Treatment Plant in waste stabilization ponds designed with anaerobic ponds as the first pond in the system. Each of three pond systems at the Western Treatment Plant receives an average dry weather flow of 120,000 m3/d with an average strength of 400 mg/L BOD5. This paper describes the design, installation and commissioning of two 3.9 hectare floating, self draining, geomembrane covers on the anaerobic section of two of these lagoon systems. Biogas collection and utilization were an important part of the installation. A description of how the biogas is collected, the quantities generated and an overview of the control system used to operate the biogas handling facility is also included. Particular emphasis was placed on maximizing biogas utilization in design of the biogas control system.


2013 ◽  
Vol 68 (12) ◽  
pp. 2527-2533 ◽  
Author(s):  
Mary Kay Camarillo ◽  
William T. Stringfellow ◽  
Jeremy S. Hanlon ◽  
Elizabeth Basha

Controlling odours from sanitary sewer systems is challenging as a result of the expansive nature of these systems. Addition of oxidizing chemicals is often practiced as a mitigation strategy. One alternative is to remove odorous compounds in the gases vented from manholes using adsorptive media. In this study, odour control devices located at manholes were observed to determine the ability of these systems to reduce hydrogen sulphide from vented gases. The odour control devices incorporated pressure regulation to control gas flow out of manhole covers and adsorptive media to remove hydrogen sulphide in the vented gases prior to release. Pressure regulation was accomplished using a variable volume bladder and two pressure relief valves that permitted gas flow when pressures exceeded 1.3 to 2.5 cm water column. The reduction in gas flow vented from manholes was intended to extend the service life of the adsorptive media, as compared with odour control devices that do not incorporate pressure modulation. Devices were deployed at four locations and three adsorptive media were tested. Although measured collection system hydrogen sulphide concentrations varied from zero to over 1,000 ppm, the removal rates observed using odour control devices were typically above 90%. The lower removal rates observed at one of the sites (50.5 ± 36.1%) appeared related to high gas flow rates being emitted at this location. Activated carbon was used in most of the tests, although use of iron media resulted in the highest removal observed: 97.8 ± 3.6%. The expected service life of the adsorptive media contained within the odour control devices is a function of site-specific hydrogen sulphide concentrations and gas flow rates. The units used in this study were in service for more than 8 to 12 months prior to requiring media replacement.


of storage as short as possible, only; 24 h should not be ex­ ceeded. Table III comprises the most important criteria for valid static and dynamic sampling. It seems that both the guide of Warren Springs, U.K. and the VDI-Guideline might be a useful base to describe commonly accepted sampling procedures aiming at a standardization of sampling which might be a first step for a harmonization of olfactometric measurements in the different laboratories and countri es. REFERENCES (1) BULLEY, N.R. and D. PHILLIPS (1980). Sensory evaluation of agricul­ tural odours: A critical review. Can. Agric. Eng. 22, 107 - 112. (2) HENRY, J.G. and R. GEHR (1980). Odour control: An operator's guide. Journal WPCF 52, 2523 - 2537. (3) ROOS, C., J.A. DON and J. SCHAEFER (1984). Characterization of odour-polluted air. In: Proc.Int.Symp., Soc. Beige de Filtr. (eds.), 25-27 April 1984, Louvain-La-Neuve, Belgium, pp. 3 - 22. (4) BAKER, A.R. and R.C. DOERR (1959). Methods of sampling and storage of air containing vapors and gases. Int.J.Air Poll. 2, 142 - 158. (5) SCHUETTE, F.J. (1967). Plastic bags for collection of gas samples. Atmosph.Environm. 1, 515 - 519. (6) SCHODDER, F. (1977T. Messen von Geruchsstoffkonzentrationen, Erfassen von Geruch. Grundl. Landtechnik 27, 73 - 82. (7) CORMACK, D., T.A. DORLING and B.W7J. LYNCH (1974). Comparison of tech­ niques for organoleptic odour-intensity assessment. Chem.Ind. (Lon­ don) no. 2, 857 - 861. (8) SCHUETZLE, D., T.J. PRATER and S. RUDDELL (1975). Sampling and anal­ ysis of emissions from stationary sources. I. Odour and total hydro­ carbons. APCA Journal 25, 925 - 932. (9) WAUTERS, E., E. WALRAVENS, E. MUYLLE and G. VERDUYN (1983). An evalu­ ation of a fast sampling procedure for the trace analysis of volatile organic compounds in ambient air. Environm.Monitor.Assessm. 3, 151-160. (10) LACHENMAYER, U. and H. KOHLER (1984). Untersuchungen zur Neuentwick-lung eines Olfaktometers. Staub - Reinhalt. Luft 44, 359 - 362. (11) BERNARD, F. (1984). Simplified methods of odour measurement: Indus­ trial application and interest for administrative control. Proc. Int. Symp., Soc. Beige de Filtr. (eds.), 25 - 27 April 1984, Louvain-La-Neuve, Belgium, pp. 139 - 150. (12) GILLARD, F. (1984). Measurement of odours by dynamic olfactometry. Application to the steel and carbonization industries. Proc.Int.Symp., Soc. Beige de Filtr. (eds.), 25 - 27 April 1984, Louvain-La-Neuve, Belgium, pp. 53 - 86. (13) MANNEBECK, H. (1975). Tragbare Olfaktometer. VDI-Bericht 226, 103-105. (14) BEDBOROUGH, D.R. (1980). Sensory measurement of odours. In: Odour Control - a concise guide, F.H.H. Valentin and A.A. North (eds.), Warren Springs Laboratories, Stevenage, Hertfordshire, U.K., pp. 17-30. (15) THIELE, V. (1984). Olfaktometrie an einer Emissionsquelle - Ergebnis-se des VDI-Ringvergleichs. Staub - Reinhalt. Luft 44, 342 - 351. (16) DUFFEE, R.A., J.P. WAHL, W. MARRONE and J.S. NADERT1973). Defining and measuring objectionable odors. Internat. Pollution Eng. Congress, Philadelphia, paper no 25a, pp. 192 - 201.


2012 ◽  
pp. 85-124 ◽  
Author(s):  
J. M. Estrada ◽  
R. Lebrero ◽  
G. Quijano ◽  
N. J. R. Kraakman ◽  
R. Muñoz
Keyword(s):  

2020 ◽  
pp. 0734242X2096022
Author(s):  
Jun Jiang ◽  
Fei Wang ◽  
Jun Wang ◽  
Jianhua Li

This study examined the release characteristics of malodorous ammonia (NH3) and hydrogen sulphide (H2S) gases in different areas of a full-capacity operational landfill in Hangzhou, China. Gas samples were collected using static boxes from exposed working areas (EWAs), temporarily covered areas (TCAs), and final closure areas (FCAs), and were analysed using spectrophotometric methods. Gas release increased in the following order: TCA > EWA > FCA. The average concentrations of released NH3 in these areas were 2763, 1171, and 27 mg m−3, respectively, and those of H2S were 2481, 631, and 10 mg m−3, respectively. The concentrations of gases released from holes in the film in the temporarily covered and EWAs were significantly higher than the AEGL-3 level values specified by the Acute Exposure Guideline Levels (AEGL) Advisory Committee. EWAs were identified as key for odour control, where the highest NH3 release was recorded at approximately 12:00. The diurnal variation in H2S release was insignificant ( p > 0.05). Therefore, the study shows that working in EWAs should be avoided at approximately noon. Adverse impacts on human health can be reduced by standardising procedures, using higher-quality films, and improving film installation procedures. The results of this study serve as a valuable reference for odour control in operational landfills.


Sign in / Sign up

Export Citation Format

Share Document