Maintenance and breeding of laboratory colonies

1971 ◽  
Vol 11 (1) ◽  
pp. 351-354 ◽  
Author(s):  
P. WOOLLEY
Keyword(s):  
1992 ◽  
Vol 70 (4) ◽  
pp. 820-824 ◽  
Author(s):  
David O. Ribble ◽  
John S. Millar

We examined the effects of sibling matings upon reproductive performance among inbred and outbred laboratory colonies of Peromyscus maniculatus. The inbred colony was founded by 12 females collected from one locality in Alberta and bred for 20 generations, with 35–45 pairs each generation. The outbred colony consisted of first-generation mice born of wild-caught females from diverse areas in Alberta. Consistent with theoretical expectations, there were no differences in reproductive performance between sibling and control (outbred) pairs within the inbred colony of mice. In contrast, sibling pairs had significantly fewer young per litter than control pairs within the outbred colony. Reproductive performance measures (proportion breeding, days from pairing to first litter, number of litters, and total number of offspring produced) were also significantly lower among sibling pairs from the outbred colony than among sibling pairs from the inbred colony. Lastly, we predicted that reproductive performance of the control pairs from the outbred colony would be less than that of control pairs from the inbred colony, due to outbreeding depression. Contrary to our predictions, average litter survival rates were greatest among the outbred colony control pairs. We suggest that the benefits of inbreeding or outbreeding extend broadly across the inbreeding–outbreeding continuum in natural populations of northern Peromyscus.


Parasite ◽  
2015 ◽  
Vol 22 ◽  
pp. 21 ◽  
Author(s):  
Arnaud Cannet ◽  
Mohammad Akhoundi ◽  
Jean-Michel Berenger ◽  
Gregory Michel ◽  
Pierre Marty ◽  
...  

1990 ◽  
Vol 80 (1) ◽  
pp. 19-26 ◽  
Author(s):  
James W. M. Logan ◽  
Faizah Abood

AbstractThe amidinohydrazone insecticide hydramethylnon, exhibited delayed toxicity to workers of Reticulitermes santonensis Feytaud and Microtermes lepidus Sjöstedt over a range of concentrations, with deaths starting two to six days after exposure. R. santonensis workers which had been exposed to hydramethylnon passed the insecticide to untreated termite workers, larvae and nymphs by trophallaxis. Laboratory colonies of R. santonensis exposed to hydramethylnon were killed completely within 20 days. The possible use of hydramethylnon impregnated baits for the control of subterranean termites is discussed.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Tharaka Wijerathna ◽  
Nayana Gunathilaka ◽  
Kithsiri Gunawardena

The field-based studies on sand flies are not adequate to uncover information required for the control of the leishmaniasis through reduction of vector populations. Therefore, establishment and maintenance of laboratory colonies of sand flies is an essential step in leishmaniasis research. In the current study, a colony of P. argentipes was established from wild-caught sand flies following standard procedures from the published literature. Morphological measurements of laboratory-reared and wild-caught individual sand flies were compared to assess the difference between two groups. The colony was successfully established under confined laboratory conditions. The comparison of morphometric parameters revealed that the laboratory-reared sand flies are significantly larger than those caught from wild, suggesting a possibility of increased fitness of sand flies under favorable environmental conditions which may cause higher prevalence in the disease. The current study reports the first successful attempt in colonizing sand flies under laboratory conditions. However, the colony data suggest that the conditions extracted from the published literature need to be optimized to suit local settings in order to achieve maximum population sizes within the available amount of resources.


Author(s):  
Chenyan Shi ◽  
Lu Zhao ◽  
Evans Atoni ◽  
Weifeng Zeng ◽  
Xiaomin Hu ◽  
...  

AbstractMosquitoes belonging to the genus Aedes can efficiently transmit many pathogenic arboviruses, placing a great burden on public health worldwide. In addition, they also carry a number of insect specific viruses (ISVs), and it was recently suggested that some of these ISVs might form a stable species-specific “core virome” in mosquito populations. However, little is known about such a core virome in laboratory colonies and if it is present across different developmental stages. In this study, we compared the viromes in eggs, larvae, pupae and adults of Aedes albopictus mosquitoes collected from the field as well as from a lab colony. The virome in lab-derived Ae. albopictus is very stable across all stages, consistent with a vertical transmission route of these viruses, forming a “vertically transmitted core virome”. The different stages of field collected Ae. albopictus mosquitoes also contains this stable vertically transmitted core virome as well as another set of viruses shared by mosquitoes across different stages, which might be an “environment derived core virome”. Both these vertically and environmentally transmitted core viromes in Ae. albopictus deserve more attention with respect to their effects on vector competence for important medically relevant arboviruses. To further study this core set of ISVs, we screened 46 publically available SRA viral metagenomic dataset of mosquitoes belonging to the genus Aedes. Some of the identified core ISVs are identified in the majority of SRAs. In addition, a novel virus, Aedes phasmavirus, is found to be distantly related to Yongsan bunyavirus 1, and the genomes of the core virus Phasi Charoen-like phasivirus is highly prevalent in the majority of the tested samples, with nucleotide identities ranging from 94% to 99%. Finally, Guadeloupe mosquito virus, and some related viruses formed three separated phylogenetic clades. How these core ISVs influence the biology of mosquito host, arboviruses infection and evolution deserve to be further explored.


2021 ◽  
Vol 153 (3) ◽  
pp. 374-390 ◽  
Author(s):  
K. Perrault ◽  
A.A. Wardlaw ◽  
J.N. Candau ◽  
C.L. Irwin ◽  
M. Demidovich ◽  
...  

AbstractSpruce budworm, Choristoneura fumiferana (Clemens) (Lepidoptera: Tortricidae), is a destructive defoliator found throughout the Nearctic boreal forest. This pest has a broad geographic range and shows regional variation in key life history traits. These population differences may represent important adaptations to local environmental conditions and reflect underlying genetic diversity. Existing laboratory colonies of spruce budworm do not capture this regional variation, so we established five new spruce budworm colonies from across its range to explore regional adaptations among spruce budworm populations within common garden experiments. We present methods for establishing new spruce budworm laboratory colonies from wild populations. We describe the process of flushing, rearing, and disease screening used on these new populations to produce healthy disease-free laboratory stocks.


2019 ◽  
Vol 286 (1914) ◽  
pp. 20191697 ◽  
Author(s):  
Felix Baier ◽  
Hopi E. Hoekstra

Animals on islands often exhibit dramatic differences in morphology and behaviour compared with mainland individuals, a phenomenon known as the ‘island syndrome’. These differences are thought to be adaptations to island environments, but the extent to which they have a genetic basis or instead represent plastic responses to environmental extremes is often unknown. Here, we revisit a classic case of island syndrome in deer mice ( Peromyscus maniculatus ) from British Columbia. We first show that Saturna Island mice and those from neighbouring islands are approximately 35% (approx. 5 g) heavier than mainland mice and diverged approximately 10 000 years ago. We then establish laboratory colonies and find that Saturna Island mice are heavier both because they are longer and have disproportionately more lean mass. These trait differences are maintained in second-generation captive-born mice raised in a common environment. In addition, island–mainland hybrids reveal a maternal genetic effect on body weight. Using behavioural testing in the laboratory, we also find that wild-caught island mice are less aggressive than mainland mice; however, laboratory-raised mice born to these founders do not differ in aggression. Together, our results reveal that these mice have different responses to the environmental conditions on islands—a heritable change in a morphological trait and a plastic response in a behavioural trait.


Sign in / Sign up

Export Citation Format

Share Document