scholarly journals The conservation of a core virome in Aedes mosquitoes across different developmental stages and continents

Author(s):  
Chenyan Shi ◽  
Lu Zhao ◽  
Evans Atoni ◽  
Weifeng Zeng ◽  
Xiaomin Hu ◽  
...  

AbstractMosquitoes belonging to the genus Aedes can efficiently transmit many pathogenic arboviruses, placing a great burden on public health worldwide. In addition, they also carry a number of insect specific viruses (ISVs), and it was recently suggested that some of these ISVs might form a stable species-specific “core virome” in mosquito populations. However, little is known about such a core virome in laboratory colonies and if it is present across different developmental stages. In this study, we compared the viromes in eggs, larvae, pupae and adults of Aedes albopictus mosquitoes collected from the field as well as from a lab colony. The virome in lab-derived Ae. albopictus is very stable across all stages, consistent with a vertical transmission route of these viruses, forming a “vertically transmitted core virome”. The different stages of field collected Ae. albopictus mosquitoes also contains this stable vertically transmitted core virome as well as another set of viruses shared by mosquitoes across different stages, which might be an “environment derived core virome”. Both these vertically and environmentally transmitted core viromes in Ae. albopictus deserve more attention with respect to their effects on vector competence for important medically relevant arboviruses. To further study this core set of ISVs, we screened 46 publically available SRA viral metagenomic dataset of mosquitoes belonging to the genus Aedes. Some of the identified core ISVs are identified in the majority of SRAs. In addition, a novel virus, Aedes phasmavirus, is found to be distantly related to Yongsan bunyavirus 1, and the genomes of the core virus Phasi Charoen-like phasivirus is highly prevalent in the majority of the tested samples, with nucleotide identities ranging from 94% to 99%. Finally, Guadeloupe mosquito virus, and some related viruses formed three separated phylogenetic clades. How these core ISVs influence the biology of mosquito host, arboviruses infection and evolution deserve to be further explored.

Author(s):  
Lucia De Marchi ◽  
Carlo Pretti ◽  
Alessia Cuccaro ◽  
Matteo Oliva ◽  
Federica Tardelli ◽  
...  

AbstractThe phylum Porifera and their symbionts produce a wide variety of bioactive compounds, playing a central role in their ecology and evolution. In this study, four different extracts (obtained by non-polar and semi-polar extraction methodologies) of the Mediterranean sponge Ircinia oros were tested through a multi-bioassay integrated approach to assess their antifouling potential. Tests were performed using three common species, associated with three different endpoints: the marine bacterium Aliivibrio fischeri (inhibition of bioluminescence), the marine diatom Phaeodactylum tricornutum (inhibition of growth), and different development stages of the brackish water serpulid Ficopomatus enigmaticus (gametes: sperm motion, vitality inhibition and cellular damage; larvae: development; adults: AChE (acetylcholinesterase)-inhibitory activity). The effects of extracts were species specific and did not vary among different extraction methodologies. In particular, no significant reduction of bioluminescence of A. fischeri was observed for all tested samples. By contrast, extracts inhibited P. tricornutum growth and had toxic effects on different F. enigmaticus’ developmental stages. Our results suggest that the proposed test battery can be considered a suitable tool as bioactivity screening of marine natural products.


2021 ◽  
Vol 22 (3) ◽  
pp. 1210
Author(s):  
Krzysztof Formicki ◽  
Agata Korzelecka-Orkisz ◽  
Adam Tański

The number of sources of anthropogenic magnetic and electromagnetic fields generated by various underwater facilities, industrial equipment, and transferring devices in aquatic environment is increasing. These have an effect on an array of fish life processes, but especially the early developmental stages. The magnitude of these effects depends on field strength and time of exposure and is species-specific. We review studies on the effect of magnetic fields on the course of embryogenesis, with special reference to survival, the size of the embryos, embryonic motor function, changes in pigment cells, respiration hatching, and directional reactions. We also describe the effect of magnetic fields on sperm motility and egg activation. Magnetic fields can exert positive effects, as in the case of the considerable extension of sperm capability of activation, or have a negative influence in the form of a disturbance in heart rate or developmental instability in inner ear organs.


Insects ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 592
Author(s):  
Valentina Candian ◽  
Monia Monti ◽  
Rosemarie Tedeschi

The transmission of phytoplasmas is the result of an intricate interplay involving pathogens, insect vectors and host plants. Knowledge of the vector’s competence during its lifespan allows us to define more sustainable well-timed control strategies targeted towards the most worrisome life stages. We investigated the temporal dynamics of ‘Candidatus Phytoplasma mali’ load in Cacopsylla melanoneura in the different developmental stages in Northwest Italy. The phytoplasma load in the vector was evaluated in overwintering adults, nymphs and newly emerged adults after different acquisition access periods. Moreover, we followed the multiplication of the phytoplasma during the aestivation and the overwintering period on conifers. Our results confirmed the ability of remigrants to retain the phytoplasma until the end of winter. We also highlighted the high acquisition efficiency and vector competence, based on phytoplasma load, of nymphs and newly emerged adults. Therefore, particular attention should be paid to the management of overwintered C. melanoneura as soon as they return to the orchards, but also to newly emerged adults, particularly in orchards with a high infection rate and when the migration to conifers is delayed.


1979 ◽  
Vol 57 (5) ◽  
pp. 979-982 ◽  
Author(s):  
Emmanuel C. Igbokwe

Species-specific patterns of larval protein electrophoregrams obtained among three species of Aedes mosquitoes were analyzed numerically. A behavioral profile was derived and illustrated for the larval protein complex of each species. Patterns of interspecific divergence in molecular behavior not detectable otherwise from the electrophoregrams were evident in the behavioral profiles of the proteins. The degree of electrophoretic correspondence obtained from the number of shared fractions among the species differs from that derived from the collective behavior of proteins. The numerical and graphic approach to the interpretation of protein electrophoregrams offers another parameter for gauging molecular divergence among related species of insects.


BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Tungadri Bose ◽  
K. V. Venkatesh ◽  
Sharmila S. Mande

Abstract Background In 2017, World Health Organization (WHO) published a catalogue of 12 families of antibiotic-resistant “priority pathogens” that are posing the greatest threats to human health. Six of these dreaded pathogens are known to infect the human gastrointestinal system. In addition to causing gastrointestinal and systemic infections, these pathogens can also affect the composition of other microbes constituting the healthy gut microbiome. Such aberrations in gut microbiome can significantly affect human physiology and immunity. Identifying the virulence mechanisms of these enteric pathogens are likely to help in developing newer therapeutic strategies to counter them. Results Using our previously published in silico approach, we have evaluated (and compared) Host-Pathogen Protein-Protein Interaction (HPI) profiles of four groups of enteric pathogens, namely, different species of Escherichia, Shigella, Salmonella and Vibrio. Results indicate that in spite of genus/ species specific variations, most enteric pathogens possess a common repertoire of HPIs. This core set of HPIs are probably responsible for the survival of these pathogen in the harsh nutrient-limiting environment within the gut. Certain genus/ species specific HPIs were also observed. Conslusions The identified bacterial proteins involved in the core set of HPIs are expected to be helpful in understanding the pathogenesis of these dreaded gut pathogens in greater detail. Possible role of genus/ species specific variations in the HPI profiles in the virulence of these pathogens are also discussed. The obtained results are likely to provide an opportunity for development of novel therapeutic strategies against the most dreaded gut pathogens.


2019 ◽  
Vol 41 (2) ◽  
pp. 127-141 ◽  
Author(s):  
Julie Meilland ◽  
Michael Siccha ◽  
Manuel F G Weinkauf ◽  
Lukas Jonkers ◽  
Raphael Morard ◽  
...  

2016 ◽  
Vol 12 (7) ◽  
pp. 20160234 ◽  
Author(s):  
S. Eryn McFarlane ◽  
Axel Söderberg ◽  
David Wheatcroft ◽  
Anna Qvarnström

Pre-zygotic isolation is often maintained by species-specific signals and preferences. However, in species where signals are learnt, as in songbirds, learning errors can lead to costly hybridization. Song discrimination expressed during early developmental stages may ensure selective learning later in life but can be difficult to demonstrate before behavioural responses are obvious. Here, we use a novel method, measuring changes in metabolic rate, to detect song perception and discrimination in collared flycatcher embryos and nestlings. We found that nestlings as early as 7 days old respond to song with increased metabolic rate, and, by 9 days old, have increased metabolic rate when listening to conspecific when compared with heterospecific song. This early discrimination between songs probably leads to fewer heterospecific matings, and thus higher fitness of collared flycatchers living in sympatry with closely related species.


2000 ◽  
Vol 76 (3) ◽  
pp. 217-226 ◽  
Author(s):  
N. BORIE ◽  
C. LOEVENBRUCK ◽  
C. BIEMONT

We analysed the pattern of expression of retrotransposon 412 through developmental stages in various populations of Drosophila simulans and D. melanogaster differing in 412 copy number. We found that the 412 expression pattern varied greatly between populations of both species, indicating that such patterns were not entirely species-specific. In D. simulans, total transcripts increased with number of 412 copies in the chromosomes when this number was low, and then decreased for high copy numbers. D. melanogaster, which has a higher 412 copy number than D. simulans, had overall a lower global 412 expression, but again showed variation in 412 expression pattern between populations. These results suggest that in populations of D. simulans with low 412 copy number, the expression pattern of this element depends not only on copy number but also on host cellular regulatory sequences near which the elements were inserted. In D. simulans populations with high copy number overall transcription was on the contrary globally repressed, as observed in D. melanogaster. A population from Canberra (Australia) which had a very high 412 copy number was found to be associated with very high expression of 412 over all developmental stages, suggesting that the above 412 expression regulation processes are overcome in this population sample. The analysis of hybrids between geographically distinct populations of D. simulans showed that 412 expression was trans-regulated differently according to developmental stages, implying complex interactions between the 412 element and stage-specific host genes.


2019 ◽  
Author(s):  
Mingshuang Wang ◽  
Bei Liu ◽  
Ruoxin Ruan ◽  
Yibing Zeng ◽  
Jinshui Luo ◽  
...  

AbstractPhyllosticta citriasiana is the causal agent of the pomelo tan spot. Here, we presented the ~34Mb genome of P. citriasiana. The genome is organized in 92 contigs, encompassing 9202 predicted genes. Comparative genomic analyses with other two Phyllosticta species (P. citricarpa and P. capitalensis) associated with citrus was conducted to understand their evolutionary conservation and diversification. Pairwise genome alignments revealed that these species are highly syntenic. All species encode similar numbers of CAZymes and secreted proteins. However, the molecular functions of the secretome showed that each species contains some enzymes with distinct activities. Three Phyllosticta species shared a core set of 7261 protein families. P. capitalensis had the largest set of orphan genes (2040), in complete contrast to that of P. citriasiana (371) and P. citricarpa (262). Most of the orphan genes were functionally unknown, but they contain a certain number of species-specific secreted proteins. A total of 23 secondary metabolites (SM) biosynthesis clusters were identified in the three Phyllosticta species, 21 of them are highly conserved among these species while the remaining 2 showed whole cluster gain and loss polymorphisms or gene content polymorphisms. Taken together, our study reveals insights into the genetic mechanisms of host adaptation of Phyllosticta species associated with citrus and paves the way to identify effectors that function in infection of citrus plants.


2018 ◽  
Vol 64 (8) ◽  
pp. 581-588
Author(s):  
A.B. Sudeep ◽  
Neda Shaikh ◽  
Y.S. Ghodke ◽  
V.S. Ingale ◽  
M.D. Gokhale

Chittoor virus (CHITV), a mosquito-borne bunyavirus (Orthobunyavirus: Bunyaviridae) isolated in India, has been found to be antigenically close to the Batai virus (BATV), which has a wide distribution across Asia, Europe, and Africa. The latter virus causes influenza-like illness in humans and mild illness in sheep and goats. BATV has been involved in genetic reassortment with other bunyaviruses, generating novel genome combinations and causing severe clinical manifestations including hemorrhagic fever. Conversely, CHITV has never been associated with any major outbreaks in India, although neutralizing antibodies have been detected in humans and domestic animals. Repeated isolations and seroprevalence have prompted us to determine the vector competence of three important mosquito species, viz., Culex quinquefasciatus, Culex tritaeniorhynchus, and Aedes aegypti, for CHITV. The three mosquito species replicated CHITV to titers of 6.3, 5.0, and 5.2 log10 TCID50/mL, respectively, and maintained the virus for substantial periods. Both of the Culex species demonstrated vector competence, while A. aegypti did not. Horizontal transmission to infant mice was also demonstrated by both Culex species. Active circulation of the virus and the availability of both susceptible hosts and competent vector mosquitoes pose a serious threat to public health should there be a reassortment.


Sign in / Sign up

Export Citation Format

Share Document