Involvement of Guanosine Triphosphate (GTP) Hydrolysis in the Mechanism of Tubulin Polymerization: Regulation of Microtubule Dynamics at Steady State by a GTP Cap

1986 ◽  
Vol 466 (1 Dynamic Aspec) ◽  
pp. 496-509 ◽  
Author(s):  
D. PANTALONI ◽  
M-F. CARLIER
2012 ◽  
Vol 198 (3) ◽  
pp. 315-322 ◽  
Author(s):  
Hiroaki Yajima ◽  
Toshihiko Ogura ◽  
Ryo Nitta ◽  
Yasushi Okada ◽  
Chikara Sato ◽  
...  

Microtubules are dynamic polymers that stochastically switch between growing and shrinking phases. Microtubule dynamics are regulated by guanosine triphosphate (GTP) hydrolysis by β-tubulin, but the mechanism of this regulation remains elusive because high-resolution microtubule structures have only been revealed for the guanosine diphosphate (GDP) state. In this paper, we solved the cryoelectron microscopy (cryo-EM) structure of microtubule stabilized with a GTP analogue, guanylyl 5′-α,β-methylenediphosphonate (GMPCPP), at 8.8-Å resolution by developing a novel cryo-EM image reconstruction algorithm. In contrast to the crystal structures of GTP-bound tubulin relatives such as γ-tubulin and bacterial tubulins, significant changes were detected between GMPCPP and GDP-taxol microtubules at the contacts between tubulins both along the protofilament and between neighboring protofilaments, contributing to the stability of the microtubule. These findings are consistent with the structural plasticity or lattice model and suggest the structural basis not only for the regulatory mechanism of microtubule dynamics but also for the recognition of the nucleotide state of the microtubule by several microtubule-binding proteins, such as EB1 or kinesin.


2018 ◽  
Vol 217 (8) ◽  
pp. 2691-2708 ◽  
Author(s):  
J. Richard McIntosh ◽  
Eileen O’Toole ◽  
Garry Morgan ◽  
Jotham Austin ◽  
Evgeniy Ulyanov ◽  
...  

We used electron tomography to examine microtubules (MTs) growing from pure tubulin in vitro as well as two classes of MTs growing in cells from six species. The tips of all these growing MTs display bent protofilaments (PFs) that curve away from the MT axis, in contrast with previously reported MTs growing in vitro whose tips are either blunt or sheetlike. Neither high pressure nor freezing is responsible for the PF curvatures we see. The curvatures of PFs on growing and shortening MTs are similar; all are most curved at their tips, suggesting that guanosine triphosphate–tubulin in solution is bent and must straighten to be incorporated into the MT wall. Variations in curvature suggest that PFs are flexible in their plane of bending but rigid to bending out of that plane. Modeling by Brownian dynamics suggests that PF straightening for MT growth can be achieved by thermal motions, providing a simple mechanism with which to understand tubulin polymerization.


Marine Drugs ◽  
2020 ◽  
Vol 18 (9) ◽  
pp. 445 ◽  
Author(s):  
Mingzhi Su ◽  
Changhao Zhao ◽  
Dandan Li ◽  
Jiafu Cao ◽  
Zhiran Ju ◽  
...  

Microtubules play a crucial role in mitosis and are attractive targets for cancer therapy. Recently, we isolated viriditoxin, a cytotoxic and antibacterial compound, from a marine fungus Paecilomyces variotii. Viriditoxin has been reported to inhibit the polymerization of bacterial FtsZ, a tubulin-like GTPase that plays an essential role in bacterial cell division. Given the close structural homology between FtsZ and tubulin, we investigated the potential antimitotic effects of viriditoxin on human cancer cells. Viriditoxin, like paclitaxel, enhanced tubulin polymerization and stabilized microtubule polymers, thereby perturbing mitosis in the SK-OV-3 cell line. However, the morphology of the stabilized microtubules was different from that induced by paclitaxel, indicating subtle differences in the mode of action of these compounds. Microtubule dynamics are also essential in cell movement, and viriditoxin repressed migration and colony formation ability of SK-OV-3 cells. Based on these results, we propose that viriditoxin interrupts microtubule dynamics, thus leading to antimitotic and antimetastatic activities.


Biochemistry ◽  
1982 ◽  
Vol 21 (3) ◽  
pp. 503-509 ◽  
Author(s):  
Ernest Hamel ◽  
Anthony A. Del Campo ◽  
Michael C. Lowe ◽  
Phyllis G. Waxman ◽  
Chii M. Lin

2000 ◽  
Vol 182 (14) ◽  
pp. 4028-4034 ◽  
Author(s):  
E. Lucile White ◽  
Larry J. Ross ◽  
Robert C. Reynolds ◽  
Lainne E. Seitz ◽  
Georgia D. Moore ◽  
...  

ABSTRACT The essential cell division protein, FtsZ, from Mycobacterium tuberculosis has been expressed in Escherichia coliand purified. The recombinant protein has GTPase activity typical of tubulin and other FtsZs. FtsZ polymerization was studied using 90° light scattering. The mycobacterial protein reaches maximum polymerization much more slowly (∼10 min) than E. coliFtsZ. Depolymerization also occurs slowly, taking 1 h or longer under most conditions. Polymerization requires both Mg2+and GTP. The minimum concentration of FtsZ needed for polymerization is 3 μM. Electron microscopy shows that polymerized M. tuberculosis FtsZ consists of strands that associate to form ordered aggregates of parallel protofilaments. Ethyl 6-amino-2,3-dihydro-4-phenyl-1H-pyrido[4,3-b][1,4]diazepin-8-ylcarbamate (SRI 7614), an inhibitor of tubulin polymerization synthesized at Southern Research Institute, inhibits M. tuberculosis FtsZ polymerization, inhibits GTP hydrolysis, and reduces the number and sizes of FtsZ polymers.


Biochemistry ◽  
1989 ◽  
Vol 28 (4) ◽  
pp. 1783-1791 ◽  
Author(s):  
Marie France Carlier ◽  
Dominique Didry ◽  
Colette Simon ◽  
Dominique Pantaloni

1992 ◽  
Vol 118 (5) ◽  
pp. 1097-1108 ◽  
Author(s):  
F Verde ◽  
M Dogterom ◽  
E Stelzer ◽  
E Karsenti ◽  
S Leibler

In eukaryotic cells, the onset of mitosis involves cyclin molecules which interact with proteins of the cdc2 family to produce active kinases. In vertebrate cells, cyclin A dependent kinases become active in S- and pro-phases, whereas a cyclin B-dependent kinase is mostly active in metaphase. It has recently been shown that, when added to Xenopus egg extracts, bacterially produced A- and B-type cyclins associate predominantly with the same kinase catalytic subunit, namely p34cdc2, and induce its histone H1 kinase activity with different kinetics. Here, we show that in the same cell free system, both the addition of cyclin A and cyclin B changes microtubule behavior. However, the cyclin A-dependent kinase does not induce a dramatic shortening of centrosome-nucleated microtubules whereas the cyclin B-dependent kinase does, as previously reported. Analysis of the parameters of microtubule dynamics by fluorescence video microscopy shows that the dramatic shortening induced by the cyclin B-dependent kinase is correlated with a several fold increase in catastrophe frequency, an effect not observed with the cyclin A-dependent kinase. Using a simple mathematical model, we show how the length distributions of centrosome-nucleated microtubules relate to the four parameters that describe microtubule dynamics. These four parameters define a threshold between unlimited microtubule growth and the establishment of steady-state dynamics, which implies that well defined steady-state length distributions can be produced by regulating precisely the respective values of the dynamical parameters. Moreover, the dynamical model predicts that increasing catastrophe frequency is more efficient than decreasing the rescue frequency to reduce the average steady state length of microtubules. These theoretical results are quantitatively confirmed by the experimental data.


2015 ◽  
Vol 210 (3) ◽  
pp. 373-383 ◽  
Author(s):  
Jingyan Fu ◽  
Minglei Bian ◽  
Guangwei Xin ◽  
Zhaoxuan Deng ◽  
Jia Luo ◽  
...  

A steady-state metaphase spindle maintains constant length, although the microtubules undergo intensive dynamics. Tubulin dimers are incorporated at plus ends of spindle microtubules while they are removed from the minus ends, resulting in poleward movement. Such microtubule flux is regulated by the microtubule rescue factors CLASPs at kinetochores and depolymerizing protein Kif2a at the poles, along with other regulators of microtubule dynamics. How microtubule polymerization and depolymerization are coordinated remains unclear. Here we show that TPX2, a microtubule-bundling protein and activator of Aurora A, plays an important role. TPX2 was phosphorylated by Aurora A during mitosis. Its phospho-null mutant caused short metaphase spindles coupled with low microtubule flux rate. Interestingly, phosphorylation of TPX2 regulated its interaction with CLASP1 but not Kif2a. The effect of its mutant in shortening the spindle could be rescued by codepletion of CLASP1 and Kif2a that abolished microtubule flux. Together we propose that Aurora A–dependent TPX2 phosphorylation controls mitotic spindle length through regulating microtubule flux.


Sign in / Sign up

Export Citation Format

Share Document