Highly porous barium strontium titanate (BST) ceramic foams with low dielectric constant from particle-stabilized foams

2017 ◽  
Vol 101 (4) ◽  
pp. 1737-1746 ◽  
Author(s):  
Wenlong Huo ◽  
Yugu Chen ◽  
Zaijuan Zhang ◽  
Jingjing Liu ◽  
Shu Yan ◽  
...  
2019 ◽  
Vol 16 (1) ◽  
pp. 65
Author(s):  
Rahmi Dewi ◽  
Tiara Pertiwi ◽  
Krisman Krisman

The thin film of Barium Strontium Titanate (BST) has been studied withcomposition ofby using sol-gel method that annealed in temperature of 600oC and 650oC. The thin film of BST is characterized by using Field Emission Scanning Electron Microscopy (FESEM) and an impedance spectroscopy. The results of  FESEM characterization for samples in temperature of 600oC and 650oC are 55.83 nm and 84.88 nm in thickness respectively. The result of impedance spectroscopy characterization given frequency values obtained by the impedance value of real and imaginary.The capacitance value at a frequency of 20 Hz from a thin film of BST in temperature of 600oC and 650oC are 69.36Fand138.70F. The dielectric constant of the thin film of BST in temperature of 600oC and 650oC are 22.17 dan 131.56 respectively.


1997 ◽  
Vol 493 ◽  
Author(s):  
Sufi Zafar ◽  
Peir Chu ◽  
T. Remmel ◽  
Robert E. Jones ◽  
Bruce White ◽  
...  

ABSTRACTThe correlation between the dielectric constant and dispersion is investigated for barium strontium titanate (BST) capacitors with platinum and iridium electrodes. For platinum electrode capacitors, dispersion decreases with increasing dielectric constant. In contrast, capacitors with iridium electrodes exhibit the reverse correlation. A simple model is proposed to provide a quantitative explanation for the observed correlation for both platinum and iridium electrodes. In addition, the dependence of the dielectric constant and dispersion on varying ratios of (Ba+Sr)/Ti is also reported.


1995 ◽  
Vol 10 (3) ◽  
pp. 708-726 ◽  
Author(s):  
C-J. Peng ◽  
S.B. Krupanidhi

The structure and electrical properties of multi-ion beam reactive sputter (MIBERS) deposited barium strontium titanate (BST) films were characterized in terms of Ba/Sr ratio, substrate temperature, annealing temperature and time, film thickness, doping concentration, and secondary low-energy oxygen ion bombardment. Films deposited onto unheated substrates, followed by annealing at 700 °C showed lower dielectric constant (<200), compared to a dielectric constant of about 560 for those deposited at elevated temperatures, probably due to reduced voids. Two types of microstructures (type I and type II) were observed depending on the incipient phase of the as-grown films, which also led to two types of time domain dielectric response, Curie-von Schweidler and Debye type, respectively. The current-voltage (I-V) characteristics of type II films doped with high donor concentration showed a bulk space-charge-limited conduction (SCLC) with discrete shallow traps embedded in a trap-distributed background at high electric fields. The I-V characteristics of bombarded films deposited at higher substrate temperatures showed promising results of lower leakage currents and trap densities.


2007 ◽  
Vol 280-283 ◽  
pp. 85-88
Author(s):  
Lin Hu ◽  
He Ping Zhou ◽  
Hao Xue ◽  
Chun Lai Xu

Barium strontium titanium oxide (BSTO) has great advantages and potentiality for the application of microwave technology. In order to be used in phased array antennas, high dielectric tunability, relatively low dielectric constant and low dielectric loss are required. In this paper, MgO was mixed into BSTO and the microstructure and dielectric properties of MgO-mixed BSTO bulk ceramics were investigated. The mole ratio of Ba and Sr was rather fixed to 5:5 in this study. It is observed that a small amount of MgO (5 wt%) has gone beyond the solubility limits of Mg in BSTO. The dielectric constant and dielectric loss of BSTO ceramics decreased with the increase of the content of MgO mixed. However, the tunability of MgO-mixed BSTO ceramics decreased at the same time. 20wt% MgO-mixed BSTO ceramics exhibits preferable dielectric properties with acceptable tunability.


1997 ◽  
Vol 493 ◽  
Author(s):  
B. A. Baumert ◽  
T.-L. Tsai ◽  
L.-H. Chang ◽  
T. P. Remmel ◽  
M. L. Kottke ◽  
...  

ABSTRACTBarium Strontium Titanate films have been deposited by rf magnetron sputtering and have been studied with respect to Ba/Sr ratio. Physical and electrical characterization has been done as a function of temperature, thickness, and composition, and results show that dielectric constant increases with increasing temperature, thickness (up to ∼80 nm), and Ba/Sr ratio for the compositions studied. The lattice parameters for the sputtered films are larger than those expected for powder samples and also increase with increasing Ba/Sr ratio.


2012 ◽  
Vol 1428 ◽  
Author(s):  
Irene J. Hsu ◽  
Raymond N. Vrtis ◽  
Jennifer E. Al-Rashid ◽  
Anupama Mallikarjunan ◽  
Kathleen E. Theodorou ◽  
...  

ABSTRACTRecently there have been a number of reports indicating concern relating to the effect of porosity, pore size distribution, and pore interconnectivity on the integration of highly porous ultra low-k organosilicate glasses (OSGs) as back-end-of-line (BEOL) interconnect dielectrics. In an effort to address these concerns a number of options to control the skeleton and pore structure of OSGs have been proposed, from adding alternative OSG precursors to alternative porogen precursors. In all these options there is a need to balance pore structure modification with critical film properties such as dielectric constant and mechanical strength. In this context, this paper examines porosity and its impact on film properties for highly porous ultra low dielectric constant films. A series of PDEMS® porous OSG films were deposited by plasma enchanced chemical vapor deposition (PECVD) from DEMS® precursor (diethoxymethylsilane) and porogen ATRP (alpha-terpenine). The percent porosity and pore interconnectivity of these films relative to the dielectric constant were measured by ellipsometric porosimetry (EP) and positron annihilation spectroscopy (PALS) respectively. Porosity and pore-size distribution for films deposited using several different species (structure former or porogen precursors) were examined using EP in an effort to understand the impact of the chemical nature of the precursor on pore morphology. Results from these depositions show that it is possible to deposit films with smaller pores using alternative structure formers (ASFs) with bulky organic groups, although there are tradeoffs with respect to other film characteristics. The addition of a separate porogen (ATRP) to the ASF lowered the dielectric constant and the addition of DEMS® precursor to the ASF/ATRP mix gave the films added structural integrity and mechanical strength. Such a fundamental understanding of structure-property relationships will help support successful integration of these porous OSG films.


1995 ◽  
Vol 67 (25) ◽  
pp. 3813-3815 ◽  
Author(s):  
R. J. Cava ◽  
W. F. Peck ◽  
J. J. Krajewski ◽  
D. A. Fleming

Sign in / Sign up

Export Citation Format

Share Document