RNA stable isotope probing and high‐throughput sequencing to identify active microbial community members in a methane‐driven denitrifying biofilm

Author(s):  
Kathryn Wigley ◽  
Emmanuel Egbadon ◽  
Carlo R. Carere ◽  
Louise Weaver ◽  
Kim Baronian ◽  
...  
2017 ◽  
Vol 83 (22) ◽  
Author(s):  
Konstantia Gkarmiri ◽  
Shahid Mahmood ◽  
Alf Ekblad ◽  
Sadhna Alström ◽  
Nils Högberg ◽  
...  

ABSTRACT RNA stable isotope probing and high-throughput sequencing were used to characterize the active microbiomes of bacteria and fungi colonizing the roots and rhizosphere soil of oilseed rape to identify taxa assimilating plant-derived carbon following 13CO2 labeling. Root- and rhizosphere soil-associated communities of both bacteria and fungi differed from each other, and there were highly significant differences between their DNA- and RNA-based community profiles. Verrucomicrobia, Proteobacteria, Planctomycetes, Acidobacteria, Gemmatimonadetes, Actinobacteria, and Chloroflexi were the most active bacterial phyla in the rhizosphere soil. Bacteroidetes were more active in roots. The most abundant bacterial genera were well represented in both the 13C- and 12C-RNA fractions, while the fungal taxa were more differentiated. Streptomyces, Rhizobium, and Flavobacterium were dominant in roots, whereas Rhodoplanes and Sphingomonas (Kaistobacter) were dominant in rhizosphere soil. “Candidatus Nitrososphaera” was enriched in 13C in rhizosphere soil. Olpidium and Dendryphion were abundant in the 12C-RNA fraction of roots; Clonostachys was abundant in both roots and rhizosphere soil and heavily 13C enriched. Cryptococcus was dominant in rhizosphere soil and less abundant, but was 13C enriched in roots. The patterns of colonization and C acquisition revealed in this study assist in identifying microbial taxa that may be superior competitors for plant-derived carbon in the rhizosphere of Brassica napus. IMPORTANCE This microbiome study characterizes the active bacteria and fungi colonizing the roots and rhizosphere soil of Brassica napus using high-throughput sequencing and RNA-stable isotope probing. It identifies taxa assimilating plant-derived carbon following 13CO2 labeling and compares these with other less active groups not incorporating a plant assimilate. Brassica napus is an economically and globally important oilseed crop, cultivated for edible oil, biofuel production, and phytoextraction of heavy metals; however, it is susceptible to several diseases. The identification of the fungal and bacterial species successfully competing for plant-derived carbon, enabling them to colonize the roots and rhizosphere soil of this plant, should enable the identification of microorganisms that can be evaluated in more detailed functional studies and ultimately be used to improve plant health and productivity in sustainable agriculture.


2017 ◽  
Vol 28 (5-6) ◽  
pp. 423-436 ◽  
Author(s):  
Jibing Li ◽  
Dayi Zhang ◽  
Mengke Song ◽  
Longfei Jiang ◽  
Yujie Wang ◽  
...  

2015 ◽  
Vol 7 (2) ◽  
pp. 282-287 ◽  
Author(s):  
Tomo Aoyagi ◽  
Satoshi Hanada ◽  
Hideomi Itoh ◽  
Yuya Sato ◽  
Atsushi Ogata ◽  
...  

2017 ◽  
Author(s):  
Nicholas D. Youngblut ◽  
Samuel E. Barnett ◽  
Daniel H. Buckley

AbstractCombining high throughput sequencing with stable isotope probing (HTS-SIP) is a powerful method for mapping in situ metabolic processes to thousands of microbial taxa. However, accurately mapping metabolic processes to taxa is complex and challenging. Multiple HTS-SIP data analysis methods have been developed, including high-resolution stable isotope probing (HR-SIP), multi-window high-resolution stable isotope probing (MW-HR-SIP), quantitative stable isotope probing (q-SIP), and ΔBD. Currently, the computational tools to perform these analyses are either not publicly available or lack documentation, testing, and developer support. To address this shortfall, we have developed the HTSSIP R package, a toolset for conducting HTS-SIP analyses in a straightforward and easily reproducible manner. The HTSSIP package, along with full documentation and examples, is available from CRAN at https://cran.r-project.org/web/packages/HTSSIP/index.html and Github at https://github.com/nick-youngblut/HTSSIP.


2021 ◽  
Author(s):  
Yanbo Liu ◽  
Mengxiao Sun ◽  
Pei Hou ◽  
Wenya Wang ◽  
Xiangkun Shen ◽  
...  

Abstract In this study, the pit mud used in manufacturing Taorong-type Baijiu was collected from the upper, middle, lower and bottom layers of pits in Henan Yangshao Liquor Co., LTD. Besides, high-throughput sequencing (HTS) technology was adopted to analyze the microbial community structure of the pit mud. In addition, the volatile compounds in the pit mud were subjected to preliminarily qualitative analysis through headspace-solid phase microextraction (HS-SPME) and gas chromatography-mass spectrometry (GC-MS). The results of HTS demonstrated that there were 5, 3, 5 and 5 dominant bacterial phyla (including 11, 11, 9 and 8 dominant bacterial genera) and 3, 3, 3 and 3 dominant fungal phyla (including 4, 7, 7 and 5 dominant fungal genera) in the pit mud from F-S (upper), G-Z (middle), H-X (lower) and I-D (bottom), respectively. The qualitative analysis results of volatile compounds demonstrated that a total of 78 kinds of volatile compounds were detected in the pit mud, including 46, 45, 39 and 49 kinds in the pit mud from F-S, G-Z, H-X and I-D, respectively. Ester and acid were the two main components in the pit mud. Meanwhile, the correlation between microorganisms and main volatile compounds in the pit mud was analyzed. Moreover, Lentimicrobium, Syner-01 and Blvii28_wastewater-sludge group were found for the first time in the pit mud used for manufacturing Taorong-type Baijiu. The findings of this study could provide a theoretical foundation for improving the quality of pit mud and the flavor of Taorong-type Baijiu.


Sign in / Sign up

Export Citation Format

Share Document