scholarly journals Membrane vesicles (MVs) from antibiotic‐resistant Staphylococcus aureus transfer antibiotic‐resistance to antibiotic‐susceptible Escherichia coli

Author(s):  
Ae Rin Lee ◽  
Seong Bin Park ◽  
Si Won Kim ◽  
Jae Wook Jung ◽  
Jin Hong Chun ◽  
...  
Antibiotics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 575
Author(s):  
Emi Nishimura ◽  
Masateru Nishiyama ◽  
Kei Nukazawa ◽  
Yoshihiro Suzuki

Information on the actual existence of antibiotic-resistant bacteria in rivers where sewage, urban wastewater, and livestock wastewater do not load is essential to prevent the spread of antibiotic-resistant bacteria in water environments. This study compared the antibiotic resistance profile of Escherichia coli upstream and downstream of human habitation. The survey was conducted in the summer, winter, and spring seasons. Resistance to one or more antibiotics at upstream and downstream sites was on average 18% and 20%, respectively, and no significant difference was observed between the survey sites. The resistance rates at the upstream site (total of 98 isolated strains) to each antibiotic were cefazolin 17%, tetracycline 12%, and ampicillin 8%, in descending order. Conversely, for the downstream site (total of 89 isolated strains), the rates were ampicillin 16%, cefazolin 16%, and tetracycline 1% in descending order. The resistance rate of tetracycline in the downstream site was significantly lower than that of the upstream site. Furthermore, phylogenetic analysis revealed that many strains showed different resistance profiles even in the same cluster of the Pulsed-Field Gel Electrophoresis (PFGE) pattern. Moreover, the resistance profiles differed in the same cluster of the upstream and the downstream sites. In flowing from the upstream to the downstream site, it is plausible that E. coli transmitted or lacked the antibiotic resistance gene.


2004 ◽  
Vol 48 (10) ◽  
pp. 3996-4001 ◽  
Author(s):  
Yolanda Sáenz ◽  
Laura Briñas ◽  
Elena Domínguez ◽  
Joaquim Ruiz ◽  
Myriam Zarazaga ◽  
...  

ABSTRACT Seventeen multiple-antibiotic-resistant nonpathogenic Escherichia coli strains of human, animal, and food origins showed a wide variety of antibiotic resistance genes, many of them carried by class 1 and class 2 integrons. Amino acid changes in MarR and mutations in marO were identified for 15 and 14 E. coli strains, respectively.


2015 ◽  
Vol 36 (11) ◽  
pp. 1275-1282 ◽  
Author(s):  
Rupak Datta ◽  
Shawn Brown ◽  
Vinh Q. Nguyen ◽  
Chenghua Cao ◽  
John Billimek ◽  
...  

OBJECTIVETo assess the time-dependent exposure of California healthcare facilities to patients harboring methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), extended-spectrum β-lactamase (ESBL)–producing Escherichia coli and Klebsiella pneumoniae, and Clostridium difficile infection (CDI) upon discharge from 1 hospital.METHODSRetrospective multiple-cohort study of adults discharged from 1 hospital in 2005–2009, counting hospitals, nursing homes, cities, and counties in which carriers were readmitted, and comparing the number and length of stay of readmissions and the number of distinct readmission facilities among carriers versus noncarriers.RESULTSWe evaluated 45,772 inpatients including those with MRSA (N=1,198), VRE (N=547), ESBL (N=121), and CDI (N=300). Within 1 year of discharge, MRSA, VRE, and ESBL carriers exposed 137, 117, and 45 hospitals and 103, 83, and 37 nursing homes, generating 58,804, 33,486, and 15,508 total exposure-days, respectively. Within 90 days of discharge, CDI patients exposed 36 hospitals and 35 nursing homes, generating 7,318 total exposure-days. Compared with noncarriers, carriers had more readmissions to hospitals (MRSA:1.8 vs 0.9/patient; VRE: 2.6 vs 0.9; ESBL: 2.3 vs 0.9; CDI: 0.8 vs 0.4; all P<.001) and nursing homes (MRSA: 0.4 vs 0.1/patient; VRE: 0.7 vs 0.1; ESBL: 0.7 vs 0.1; CDI: 0.3 vs 0.1; all P<.001) and longer hospital readmissions (MRSA: 8.9 vs 7.3 days; VRE: 8.9 vs 7.4; ESBL: 9.6 vs 7.5; CDI: 12.3 vs 8.2; all P<.01).CONCLUSIONSPatients harboring antibiotic-resistant pathogens rapidly expose numerous facilities during readmissions; regional containment strategies are needed.Infect. Control Hosp. Epidemiol. 2015;36(11):1275–1282


2019 ◽  
Vol 12 (7) ◽  
pp. 984-993 ◽  
Author(s):  
Md. Abdus Sobur ◽  
Abdullah Al Momen Sabuj ◽  
Ripon Sarker ◽  
A. M. M. Taufiqur Rahman ◽  
S. M. Lutful Kabir ◽  
...  

Aim: The present study was carried out to determine load of total bacteria, Escherichia coli and Salmonella spp. in dairy farm and its environmental components. In addition, the antibiogram profile of the isolated bacteria having public health impact was also determined along with identification of virulence and resistance genes by polymerase chain reaction (PCR) under a one-health approach. Materials and Methods: A total of 240 samples of six types (cow dung - 15, milk - 10, milkers' hand wash - 10, soil - 10 water - 5, and vegetables - 10) were collected from four dairy farms. For enumeration, the samples were cultured onto plate count agar, eosin methylene blue, and xylose-lysine deoxycholate agar and the isolation and identification of the E. coli and Salmonella spp. were performed based on morphology, cultural, staining, and biochemical properties followed by PCR. The pathogenic strains of E. coli stx1, stx2, and rfbO157 were also identified through PCR. The isolates were subjected to antimicrobial susceptibility test against 12 commonly used antibiotics by disk diffusion method. Detection of antibiotic resistance genes ereA, tetA, tetB, and SHV were performed by PCR. Results: The mean total bacterial count, E. coli and Salmonella spp. count in the samples ranged from 4.54±0.05 to 8.65±0.06, 3.62±0.07 to 7.04±0.48, and 2.52±0.08 to 5.87±0.05 log colony-forming unit/g or ml, respectively. Out of 240 samples, 180 (75%) isolates of E. coli and 136 (56.67%) isolates of Salmonella spp. were recovered through cultural and molecular tests. Among the 180 E. coli isolates, 47 (26.11%) were found positive for the presence of all the three virulent genes, of which stx1 was the most prevalent (13.33%). Only three isolates were identified as enterohemorrhagic E. coli. Antibiotic sensitivity test revealed that both E. coli and Salmonella spp. were found highly resistant to azithromycin, tetracycline, erythromycin, oxytetracycline, and ertapenem and susceptible to gentamycin, ciprofloxacin, and imipenem. Among the four antibiotic resistance genes, the most observable was tetA (80.51-84.74%) in E. coli and Salmonella spp. and SHV genes were the lowest one (22.06-25%). Conclusion: Dairy farm and their environmental components carry antibiotic-resistant pathogenic E. coli and Salmonella spp. that are potential threat for human health which requires a one-health approach to combat the threat.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Fermín Mejía ◽  
Nohelia Castro-del Campo ◽  
Arleny García ◽  
Katerine Rodríguez ◽  
Humberto Cornejo ◽  
...  

Foodborne bacteria, with a high degree of antibiotic resistance, play an important role in the morbidity and mortality of gastrointestinal diseases worldwide. Among 250 disease-causing bacteria, Staphylococcus aureus is one of the major causes of food poisoning, and its resistance to multiple antimicrobials remains of crucial concern. Cheese is often contaminated when proper sanitary procedures are not followed during its production and marketing. This work aimed to evaluate the microbiological quality of pasteurized white cheese commercialized in Panama City. Cheese from five different brands sold in local supermarkets were selected to determine the presence of S. aureus as well as its antibiotic resistance profile. The results showed significant contamination of S. aureus with a geometric median sample of 104–107 CFU/g. Four out of five (4/5) cheese brands analyzed presented risk of food poisoning by exceeding the allowed range of consumption with a geometric median sample of 1,8 × 106–1,4 × 107 CFU/g. Fourteen different resistance phenotypes were found. Fifty-five percent (55%) of the analyzed strains were resistant to erythromycin. The data confirm a relatively high prevalence and high levels of S. aureus, most likely originated during handling in Panama City retail markets. Further studies are needed to reduce bacterial contamination and to decrease the risk of food poisoning in the consumption of pasteurized cheese.


2021 ◽  
Vol 9 ◽  
Author(s):  
Thanh Chung Pham ◽  
Van-Nghia Nguyen ◽  
Yeonghwan Choi ◽  
Dongwon Kim ◽  
Ok-Sang Jung ◽  
...  

The ability to detect hypochlorite (HOCl/ClO−) in vivo is of great importance to identify and visualize infection. Here, we report the use of imidazoline-2-thione (R1SR2) probes, which act to both sense ClO− and kill bacteria. The N2C=S moieties can recognize ClO− among various typical reactive oxygen species (ROS) and turn into imidazolium moieties (R1IR2) via desulfurization. This was observed through UV–vis absorption and fluorescence emission spectroscopy, with a high fluorescence emission quantum yield (ՓF = 43–99%) and large Stokes shift (∆v∼115 nm). Furthermore, the DIM probe, which was prepared by treating the DSM probe with ClO−, also displayed antibacterial efficacy toward not only Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) but also methicillin-resistant Staphylococcus aureus (MRSA) and extended-spectrum ß-lactamase–producing Escherichia coli (ESBL-EC), that is, antibiotic-resistant bacteria. These results suggest that the DSM probe has great potential to carry out the dual roles of a fluorogenic probe and killer of bacteria.


Author(s):  
Nada Hanna ◽  
Manju Purohit ◽  
Vishal Diwan ◽  
Salesh P. Chandran ◽  
Emilia Riggi ◽  
...  

The emergence of antibiotic resistance is a major global and environmental health issue, yet the presence of antibiotic residues and resistance in the water and sediment of a river subjected to excessive anthropogenic activities and their relationship with water quality of the river are not well studied. The objectives of the present study were a) to investigate the occurrence of antibiotic residues and antibiotic-resistant Escherichia coli (E. coli) in the water and sediment of the Kshipra river in India at seven selected sites during different seasons of the years 2014, 2015, and 2016 and b) to investigate the association between antibiotic residues and antibiotic-resistant E. coli in water and sediment and measured water quality parameters of the river. Antibiotic residues and resistant E. coli were present in the water and sediment and were associated with the measured water quality parameters. Sulfamethoxazole was the most frequently detected antibiotic in water at the highest concentration of 4.66 µg/L and was positively correlated with the water quality parameters. Significant (p < 0.05) seasonal and spatial variations of antibiotic-resistant E. coli in water and sediment were found. The resistance of E. coli to antibiotics (e.g., sulfamethiazole, norfloxacin, ciprofloxacine, cefotaxime, co-trimoxazole, ceftazidime, meropenem, ampicillin, amikacin, metronidazole, tetracycline, and tigecycline) had varying associations with the measured water and sediment quality parameters. Based on the results of this study, it is suggested that regular monitoring and surveillance of water quality, including antibiotic residues and antibiotic resistance, of all rivers should be taken up as a key priority, in national and Global Action Plans as these can have implications for the buildup of antibiotic resistance.


Sign in / Sign up

Export Citation Format

Share Document