scholarly journals Prevalence and Characterization of Antibiotic-Resistant Staphylococcus aureus Recovered from Pasteurized Cheese Commercialized in Panama City Markets

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Fermín Mejía ◽  
Nohelia Castro-del Campo ◽  
Arleny García ◽  
Katerine Rodríguez ◽  
Humberto Cornejo ◽  
...  

Foodborne bacteria, with a high degree of antibiotic resistance, play an important role in the morbidity and mortality of gastrointestinal diseases worldwide. Among 250 disease-causing bacteria, Staphylococcus aureus is one of the major causes of food poisoning, and its resistance to multiple antimicrobials remains of crucial concern. Cheese is often contaminated when proper sanitary procedures are not followed during its production and marketing. This work aimed to evaluate the microbiological quality of pasteurized white cheese commercialized in Panama City. Cheese from five different brands sold in local supermarkets were selected to determine the presence of S. aureus as well as its antibiotic resistance profile. The results showed significant contamination of S. aureus with a geometric median sample of 104–107 CFU/g. Four out of five (4/5) cheese brands analyzed presented risk of food poisoning by exceeding the allowed range of consumption with a geometric median sample of 1,8 × 106–1,4 × 107 CFU/g. Fourteen different resistance phenotypes were found. Fifty-five percent (55%) of the analyzed strains were resistant to erythromycin. The data confirm a relatively high prevalence and high levels of S. aureus, most likely originated during handling in Panama City retail markets. Further studies are needed to reduce bacterial contamination and to decrease the risk of food poisoning in the consumption of pasteurized cheese.

2021 ◽  
Vol 11 (4) ◽  
pp. 642-657
Author(s):  
Shimaa Tawfeeq Omara ◽  
Ashraf Samir Hakim ◽  
Magdy Ali Bakry

Detailed information on the resistance patterns of Staphylococcus aureus (S. aureus) in milk and cheese is strongly required to facilitate risk assessment analysis in case of food poisoning context and to improve therapeutic approaches used in dairy farms. The present study aimed to perform phenotypic and genotypic antimicrobial characterizations of methicillin, vancomycin, and erythromycin-resistant S. aureus isolated from milk and dairy products through screening mecA, vanA, and ermC using molecular PCR amplification technology. Moreover, the association between each genotypic and its related antibiotic resistance phenotypic features within the isolated S. aureus strains were analyzed. Moreover, the current study aimed to study MRSA's ability to form biofilms. Out of 226 milk and dairy product samples collected from different retailers in Giza Governorate, 69.5% of the samples were positive for the presence of S. aureus. The isolation rate of S. aureus strains from cattle milk, sheep milk, white cheese, flamenco, and mesh samples were 79.7%, 76.5%, 56.0%, 40.0%, and 94.7%, respectively. Multidrug-resistant S. aureus (MDR) was detected in 51% of all isolated S. aureus strains. All tested S. aureus strains were sensitive to trimethoprim-sulfamethoxazole, linezolid, ciprofloxacin, and gentamycin. However, their resistance rates against penicillin, oxacillin, vancomycin, erythromycin, tetracycline, clindamycin and chloramphenicol were 62.4%, 65.0%, 44.6%, 45.9%, 21.0%, 14.0%, and 2.5%, respectively. Of the isolated S. aureus strains, 72.6%, 40.1%, and 48.4% were carriers for mecA, vanA, and ermC genes and the amplified products were at 310, 1030, and 295 bp, respectively. Methicillin-resistant S. aureus isolates were detected in 47.1% of all isolated S. aureus strains. The results indicated that 35.0% of the tested S. aureus strains were genotypic vanA gene carriers and phenotypic resistant to vancomycin representing vancomycin-resistant S. aureus strains. Moreover, 42.7% of all isolated S. aureus strains were carriers for ermC gene and were phenotypic resistant to erythromycin representing erythromycin-resistant S. aureus. The presence of mecA, vanA, and ermC genes in S. aureus was statistically associated with their related phenotypic resistance patterns against both penicillin and oxacillin, vancomycin, and erythromycin, respectively. Moreover, along with an increase in the frequency of mecA, vanA, and ermC genes, their phenotypic antibiotic resistance patterns sharply increased with an odd ratio >1. Of MRSA isolates, 6.8% indicated weak biofilm-formation ability, while 93.2% exhibit no biofilm-forming ability.


2017 ◽  
Vol 6 (04) ◽  
pp. 5334 ◽  
Author(s):  
Daniel Loeto ◽  
Kabo Wale ◽  
Tidimalo Coetzee ◽  
Krishna B. Khare* ◽  
Thabang Carol Sigwele ◽  
...  

Staphylococcus aureus is one of the causes of foodborne diseases worldwide. Staphylococcal food poisoning ensues after ingestion of contaminated food and results in symptoms of gastroenteritis such as vomiting, abdominal cramps and diarrhea. The present paper aims to isolate Staphylococcus aureus from foods sold by street vendors in Gaborone, Botswana, and to determine its enterotoxigenic potential and antibiotic resistance profile. One hundred eight food samples comprising starch, meat, salads and vegetables portions were collected from these vendors and tested for the presence of S. aureus. Identification of Staphylococcus aureus to the species level was performed using the Vitek 2 automated identification and susceptibility testing system (BioMerieux, Marcy-I’Etoile, France). Enterotoxins were detected by the Reversed Passive Latex Agglutination method (SET-RPLA). Results showed that 49 (45%) of the samples tested positive for Staphylococcus aureus. The organism was isolated at higher frequencies in vegetables and starchy foods (34.7%) than in meats (30.6%). These differences in isolation rates however, were not statistically significant (p> 0.05). Staphylococcus aureus isolates were found to be resistant to penicillin G (52.4%), tetracycline (38.1%), methicillin (26.2%) and vancomycin (11.9%). Four Staphylococcal enterotoxin types A-D, were detected among the isolates. Staphylococcal enterotoxin D was the most prevalent (52.9%), while enterotoxin C was produced by the least number of isolates (5.9%). Of note, five isolates simultaneously expressed two or more enterotoxin types in varying combinations. The present study underscores a potential risk of staphylococcal food poisoning and transmission of methicillin resistant S. aueus strains for consumers of street vended food products in Gaborone, Botswana especially in the absence of a quality assurance regulatory framework. As a mitigating factor, sensitization of street food vendors on the importance of food and personal hygiene is strongly recommended.


Antibiotics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 575
Author(s):  
Emi Nishimura ◽  
Masateru Nishiyama ◽  
Kei Nukazawa ◽  
Yoshihiro Suzuki

Information on the actual existence of antibiotic-resistant bacteria in rivers where sewage, urban wastewater, and livestock wastewater do not load is essential to prevent the spread of antibiotic-resistant bacteria in water environments. This study compared the antibiotic resistance profile of Escherichia coli upstream and downstream of human habitation. The survey was conducted in the summer, winter, and spring seasons. Resistance to one or more antibiotics at upstream and downstream sites was on average 18% and 20%, respectively, and no significant difference was observed between the survey sites. The resistance rates at the upstream site (total of 98 isolated strains) to each antibiotic were cefazolin 17%, tetracycline 12%, and ampicillin 8%, in descending order. Conversely, for the downstream site (total of 89 isolated strains), the rates were ampicillin 16%, cefazolin 16%, and tetracycline 1% in descending order. The resistance rate of tetracycline in the downstream site was significantly lower than that of the upstream site. Furthermore, phylogenetic analysis revealed that many strains showed different resistance profiles even in the same cluster of the Pulsed-Field Gel Electrophoresis (PFGE) pattern. Moreover, the resistance profiles differed in the same cluster of the upstream and the downstream sites. In flowing from the upstream to the downstream site, it is plausible that E. coli transmitted or lacked the antibiotic resistance gene.


2021 ◽  
Vol 49 (1) ◽  
Author(s):  
Arash Mesbah ◽  
Zohreh Mashak ◽  
Zohreh Abdolmaleki

Abstract Background Resistant Staphylococcus aureus (S. aureus) bacteria are considered among the major causes of foodborne diseases. This survey aims to assess genotypic and phenotypic profiles of antibiotic resistance in S. aureus bacteria isolated from ready-to-eat food samples. Methods According to the previously reported prevalence of S. aureus in ready-to-eat food samples, a total of 415 ready-to-eat food samples were collected from Tehran province, Iran. S. aureus bacteria were identified using culture and biochemical tests. Besides, the phenotypic antibiotic resistance profile was determined by disk diffusion. In addition, the genotypic pattern of antibiotic resistance was determined using the PCR. Results A total of 64 out of 415 (15.42%) ready-to-eat food samples were contaminated with S. aureus. Grilled mushrooms and salad olivieh harbored the highest contamination rate of (30%), while salami samples harbored the lowest contamination rate of 3.33%. In addition, S. aureus bacteria harbored the highest prevalence of resistance to penicillin (85.93%), tetracycline (85.93%), gentamicin (73.43%), erythromycin (53.12%), trimethoprim-sulfamethoxazole (51.56%), and ciprofloxacin (50%). However, all isolates were resistant to at least four antibiotic agents. Accordingly, the prevalence of tetK (70.31%), blaZ (64.06%), aacA-D (57.81%), gyrA (50%), and ermA (39.06%) was higher than that of other detected antibiotic resistance genes. Besides, AacA-D + blaZ (48.43%), tetK + blaZ (46.87%), aacA-D + tetK (39.06%), aacA-D + gyrA (20.31%), and ermA + blaZ (20.31%) were the most frequently identified combined genotypic patterns of antibiotic resistance. Conclusion Ready-to-eat food samples may be sources of resistant S. aureus, which pose a hygienic threat in case of their consumption. However, further investigations are required to identify additional epidemiological features of S. aureus in ready-to-eat foods.


2019 ◽  
Vol 70 (10) ◽  
pp. 3549-3554
Author(s):  
Florica Marinescu ◽  
Mihaela Ilie ◽  
Gina Ghita ◽  
Ioana Savin ◽  
Carmen Tociu ◽  
...  

Twenty-two groundwater sources mainly used for drinking purpose in Bucharest peri-urban area were investigated for assessment of physico-chemical and microbiological quality with a view to determining its potential risk to public health. Results of chemical analysis revealed that nitrites, sulphates and chlorides were below the permissible levels, while 63.64% of the analysed groundwater sources exceeded the maximum admissible concentration for nitrates, with concentration variations ranging from 67.27 to 523.19 mg/L. The bacteriological analysis showed that in about 63% of groundwater sources total coliform, faecal coliform and enterococci have exceeded the threshold limits recommended by the Drinking Water Directive 98/83/EC and the Romanian Law. Another aim of the study was to investigate the prevalence of antibiotic resistance among Gram-negative strains isolated from groundwater sources. There observed the resistance to many antibiotics, particularly: ticarcillin (80%), aztreonam (29%), gentamicin (11%), imipenem (9%), ceftriaxone (9%), ceftazidime (3%) and ciprofloxacin (3%). Significant higher resistance rates were observed in strains isolated from shallow groundwater sources as compared with strains isolated from deep groundwater sources. Pseudomonas sp. (26%) isolates with multiple-drug resistance (MDR) were encountered. The results of the study revealed a bacteriological contamination and high levels of nitrate concentrations in most of the groundwater samples, which could pose an important risk to human health.


Author(s):  
Jinru Chen ◽  
Joycelyn Quansah

Fresh produce-borne enteric bacterial pathogens with resistance to antibiotics have posed serious challenges to food safety and public health worldwide.  This study examined the antibiotic resistance profile of Salmonella enterica (n=33), previously isolated from exotic and indigenous leafy green vegetable samples (n=328) collected from 50 vegetable farms in 12 farming areas and 37 vegetable sellers in 4 market centers in Accra, Ghana during the period of March 2016 to March 2017, and determined the distribution of integrons among antibiotic-resistant isolates.  The susceptibility of the Salmonella isolates to 12 antibiotics was assayed using the standard disc diffusion assay.  The minimum inhibitory concentrations (MICs) of the five most resisted antibiotics were determined using the twofold macro dilution method.  PCR assay was used to detect the presence of integrons in Salmonella cells, and PCR product with amplified integron gene cassette was purified and sequenced using the Sanger sequencing technology.  The Salmonella isolates used in the study resisted at least one tested antibiotic, and multi-drug resistant (MDR) isolates were 30.3% (10/33).  Most isolates (81.8%) were resistant to sulfisoxazole.  The MICs of tetracycline, cefoxitin, streptomycin, ampicillin, and sulfisoxazole were 16, 32, 64, 64, and > 1,024 µg/ml, respectively.  A total of five different patterns of MDR were observed among the Salmonella isolates, and the common MDR patterns were AAuFox (30.3%) and AAuFoxSSu (18.1%).  One out of the 33 (3.0%) Salmonella isolates tested positive for class 1 integron with a gene cassette of about 800 bp.  Nucleotide sequencing revealed the class 1 integron carried a single gene dfrA7 .  Future studies are needed to confirm whether the consumption of contaminated leafy green vegetables is a route of acquiring antibiotic-resistant Salmonella by consumers in Accra, Ghana.


2020 ◽  
Vol 13 (1) ◽  
pp. 75-79 ◽  
Author(s):  
Ravichandran Swathirajan Chinnambedu ◽  
Ragavan Rameshkumar Marimuthu ◽  
Suhas Solomon Sunil ◽  
Pradeep Amrose ◽  
Vignesh Ramachandran ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document