scholarly journals Therapeutic effects of bone marrow mesenchymal stem cells‐derived exosomes on osteoarthritis

2021 ◽  
Vol 25 (19) ◽  
pp. 9281-9294
Author(s):  
Yi Jin ◽  
Min Xu ◽  
Hai Zhu ◽  
Chen Dong ◽  
Juan Ji ◽  
...  
Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 5133-5133
Author(s):  
Jun Ren ◽  
Hanfang Jiang ◽  
Lijun Di ◽  
Guohong Song

Abstract Background and Aim: Bone marrow stem cells can differentiate into mature hepatocytes in vitro and in vivo. Moreover, recent study shown bone marrow mesenchymal stem cells (MSCs) are the most potent component in hepatic differentiation, suggesting that the transplantation of MSCs is a promising treatment for liver disease. However, little information is available about the therapeutic potential of MSCs transplantation in cases of hepatic cell carcinoma (HCC). Here, we transplanted bone marrow-derived MSCs to testify their effects in a murine model of orthotopic HCC. Methods:MSCs were obtained from tow male strains of β-galactosidase (β-gal) transgenic mouse(Rosa 26) and BALB/c mouse. MSCs were injected into tumor in BALB/c femal murine models of orthotopic HCC. Tumor growths were assessed by MRI on 7 days and survival rates were observed. When mouse was dying, the liver was removed from each treated mouse and evaluated by x-gal staining, and immunohistochemisty as well. Results: MSCs transplantation increased the survival of hepatocellular carcinoma-bearing mice(25.5±4.5days verus 21.3±1.7days, p=0.025) and decreased tumor diameter slightly (7.7±2.9mm versus 9.4±2.8mm, p=0.284). MSCs transplanted directly into the tumor and/ or normal hepatic parenchyma in the same liver lobe localized mainly at the border between the tumor cells and normal liver parenchyma, induced a large area of coagulative necrosis in the tumor bed. Some engrafted MSCs were positive for albumin. There are in the carcinoma bearing BALB/c mice with MSCs implanted, whether MSCs from BALB/c mice or from Rosa 26 transgenic mice. Conclusion: Our results suggest that the therapeutical effects of MSCs might be mediated not only by their differentiation into hepatocyte, but also mainly by they possess intrinsic antineoplastic properties.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Hang Zhao ◽  
Zhiying He ◽  
Dandan Huang ◽  
Jun Gao ◽  
Yanfang Gong ◽  
...  

Background & Aims. Severe acute pancreatitis (SAP) remains a high-mortality disease. Bone marrow (BM) mesenchymal stem cells (MSCs) have been demonstrated to have plasticity of transdifferentiation and to have immunomodulatory functions. In the present study, we assessed the roles of MSCs in SAP and the therapeutic effects of MSC on SAP after transplantation.Methods. A pancreatitis rat model was induced by the injection of taurocholic acid (TCA) into the pancreatic duct. After isolation and characterization of MSC from BM, MSC transplantation was conducted 24 hrs after SAP induction by tail vein injection. The survival rate was observed and MSCs were traced after transplantation. The expression of TNF-αand IL-1βmRNA in the transplantation group was also analyzed.Results. The survival rate of the transplantation group was significantly higher compared to the control group (p<0.05). Infused MSCs were detected in the pancreas and BM 3 days after transplantation. The expression of TNF-αand IL-1βmRNA in the transplantation group was significantly lower than in the control group in both the pancreas and the lungs (p<0.05).Conclusions. MSC transplantation could improve the prognosis of SAP rats. Engrafted MSCs have the capacity of homing, migration, and planting during the treatment of SAP.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Juan Cao ◽  
Shike Hou ◽  
Hui Ding ◽  
Ziquan Liu ◽  
Meijuan Song ◽  
...  

Recently, mesenchymal stem cells (MSCs) are increasingly used as a panacea for multiple types of disease short of effective treatment. Dozens of clinical trials published demonstrated strikingly positive therapeutic effects of MSCs. However, as a specific agent, little research has focused on the dynamic distribution of MSCs afterin vivoadministration. In this study, we track systemically transplanted allogeneic bone marrow mesenchymal stem cells (BMSCs) in normal rats through bioluminescence imaging (BLI) in real time.Ex vivoorgan imaging, immunohistochemistry (IHC), and RT-PCR were conducted to verify the histological distribution of BMSCs. Our results showed that BMSCs home to the dorsal skin apart from the lungs and kidneys after tail vein injection and could not be detected 14 days later. Allogeneic BMSCs mainly appeared not at the parenchymatous organs but at the subepidermal connective tissue and adipose tissue in healthy rats. There were no significant MSCs-related adverse effects except for transient decrease in neutrophils. These findings will provide experimental evidences for a better understanding of the biocharacteristics of BMSCs.


2018 ◽  
Vol 1 (2) ◽  
pp. 1-11
Author(s):  
Marwa A. Masoud ◽  
Eman G. Mohamed ◽  
Wedad A. Hassan ◽  
Ebtehal Mohammad F

Methotrexate (MTX) is an anti-metabolite in cancer chemotherapy and is associated with various toxicities assigned to inflammation and oxidative stress. The present study was undertaken to corroborate the therapeutic effects of bone marrow mesenchymal stem cells (BM-MSCs) and adipose-derived mesenchymal stem cells (AD-MSCs) in MTX-induced intestinal toxicity in experimental animals as compared with dexamethasone (Dex). Rats were divided into five groups: I-Normal control group, II- MTX (14 mg/kg, as a single dose/week for 2 weeks), III & IV- BM-MSCs & AD-MSCs (2 × 106 cells/rat, 1 week after last dose of MTX), respectively, plus V- Dex (0.5 mg/kg/ for 7 days, 1 week after last dose of MTX). MTX induced marked intestinal elevation of interleukin-6, total oxidant, and nitrite/ nitrate, caspase-3 contents and myeloperoxidase activity, along with the reduction of reduced glutathione content and catalase activity. In conclusion, the positive modulation of MTX toxicity could be attributed to the free radical scavenging, anti-inflammatory and antiapoptotic potential of BM-MSC and AD-MSCs which will possibly make them as remarkable hopeful for the treatment of intestinal injury.


2021 ◽  
Vol 11 (10) ◽  
pp. 1636-1644
Author(s):  
Zuozhong Liu ◽  
Chunling Shui ◽  
Lili Huang ◽  
Yiming Qu

Secreted frizzled-related protein 1 (SFRP1) is associated with cell differentiation, and its expression can be modulated by resveratrol. However, their impacts on bone marrow mesenchymal stem cells (BMSCs)-induced osteogenesis and ovariectomy-triggered bone loss remain unclear. Therefore, we in this study aimed to dissect the regulation of resveratrol on SFRP1, along with its sequential effects on differentiation and osteoporosis prevention of BMSCs. The SFRP1 expression in the ovariectomized (OVX) mice-originated bone tissues, BMSCs and bone marrow-derived macrophages (BMMs), during their differentiation towards osteoblasts and chondrocytes, was quantified by qRT-PCR and Western-blot. SFRP1-siRNA was applied for studying its influence on osteogenesis of BMSCs. Additionally, we evaluated the impacts of resveratrol on OVX mice and SFRP1 expression. SFRP1 was significantly up-regulated in the OVX mice-derived bone tissues and BMSCs, but gradually decreased during osteogenesis. Its expression was not significantly changed in BMSCs during their differentiation towards osteoclasts or in BMMs. The knockout of SFRP1 significantly improved mineralization potentiality, alkaline phosphatase activity and expression of several osteoblast-specific genes. Moreover, the bone loss was ameliorated in OVX mice treated with resveratrol, whose therapeutic effects were achieved by facilitating the expression of osteogenesis-associated genes while suppressing the SFRP1 expression. We also observed that the SFRP1 exerted a negative effect on osteogenesis of BMSCs and estrogen deficiency-induced osteoporosis, enabling itself to be an indicator of osteogenesis and also a molecular target for PMOP treatment. Resveratrol is a suppressor of SFRP1that can be applied as an active ingredient for treating PMOP.


2020 ◽  
Author(s):  
Meiling Liu(Former Corresponding Author) ◽  
Luyang Cheng ◽  
Xianglu Li ◽  
Haifeng Ding ◽  
Hongzhi Wang ◽  
...  

Abstract Background: Long-term high glucose environment can cause muscle tissue atrophy, and then lead to musculoskeletal depression or even disability. Regenerative medicine is an extremely attractive select to solve this problem. Resveratrol is a compound which has various clinical therapeutic effects including regulating the myogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). So, the objective of this study is to observe if resveratrol affect myogenic induction of rat BMSCs under high glucose environment and explore the possible mechanism. Methods: Rat BMSCs were isolated and cultured. The phenotypes were identified when cultured to the third passage cells (P3 cells). Then the P3 cells were used to induce to differentiate into myogenic cells by using the conditioned medium. After grouping, glucose, resveratrol and EX527 (inhibitor of SIRT1) were added. The cell viability was measured by MTT assay. The myogenesis related protein was detected by immunofluorescence. The level of reactive oxygen species (ROS) and superoxide dismutase (SOD) activity were detected by use of assay kits. The cell cycle was assayed with flow cytometry. The expression of FOXO1, AKT, p-AKT, MyoD1 and Myogenin were measured by WB. All above indicators in different groups were quantified and compared. Results: During myogenic induction, after 72h treatment, high glucose (35 mmol/L) reduced cell viability and proliferation of rat BMSCs significantly, increased intracellular ROS levels clearly, decreased SOD activity obviously, and restrained AKT/FOXO1 pathway apparently. Resveratrol (15μmol/L) could regulate the process positively and reverse the suppression caused by high glucose partly through restoring cell proliferation and viability, reducing peroxidative damage and activating AKT/FOXO1 pathway. After pretreated the cells with EX527 (20 μmol/L), this reverse effect of resveratrol was eliminated. Conclusion: Resveratrol not only promoted myogenic induction of rat BMSCs, but also partially reversed myogenic induction supression of rat BMSCs caused by high glucose through activating SIRT1/AKT/FOXO1 pathway. [Key words] resveratrol, bone marrow mesenchymal stem cells, myogenic induction, glucose, SIRT1, AKT, FOXO1


Sign in / Sign up

Export Citation Format

Share Document