Teledermatology diagnosis of the first Italian patient affected with restrictive dermopathy due to ZMPSTE 24 homozygous mutation

Author(s):  
A. Diociaiuti ◽  
P. D'Amico ◽  
E. Pisaneschi ◽  
S. Giancristoforo ◽  
M.G. Pappalardo ◽  
...  
2018 ◽  
Vol 98 (8) ◽  
pp. 803-804 ◽  
Author(s):  
A Diociaiuti ◽  
E Rosati ◽  
M Paglietti ◽  
P Vacca ◽  
R Boldrini ◽  
...  

2010 ◽  
Vol 222 (S 01) ◽  
Author(s):  
J Pöschl ◽  
P Ruef ◽  
M Griese ◽  
P Lohse ◽  
C Aslanidis ◽  
...  

1996 ◽  
Vol 76 (02) ◽  
pp. 253-257 ◽  
Author(s):  
Takeshi Hagiwara ◽  
Hiroshi Inaba ◽  
Shinichi Yoshida ◽  
Keiko Nagaizumi ◽  
Morio Arai ◽  
...  

SummaryGenetic materials from 16 unrelated Japanese patients with von Willebrand disease (vWD) were analyzed for mutations. Exon 28 of the von Willebrand factor (vWF) gene, where point mutations have been found most frequent, was screened by various restriction-enzyme analyses. Six patients were observed to have abnormal restriction patterns. By sequence analyses of the polymerase chain-reaction products, we identified a homozygous R1308C missense mutation in a patient with type 2B vWD; R1597W, R1597Q, G1609R and G1672R missense mutations in five patients with type 2A; and a G1659ter nonsense mutation in a patient with type 3 vWD. The G1672R was a novel missense mutation of the carboxyl-terminal end of the A2 domain. In addition, we detected an A/C polymorphism at nucleotide 4915 with HaeIII. There was no particular linkage disequilibrium of the A/C polymorphism, either with the G/A polymorphism at nucleotide 4391 detected with Hphl or with the C/T at 4891 detected with BstEll.


Author(s):  
Hasan Akduman ◽  
Dilek Dilli ◽  
Serdar Ceylaner

AbstractCongenital glucose-galactose malabsorption (CGGM) is an autosomal recessive disorder originating from an abnormal transporter mechanism in the intestines. It was sourced from a mutation in the SLC5A1 gene, which encodes a sodium-dependent glucose transporter. Here we report a 2-day-old girl with CGGM who presented with severe hypernatremic dehydration due to diarrhea beginning in the first hours of life. Mutation analysis revealed a novel homozygous mutation NM_000343.3 c.127G > A (p.Gly43Arg) in the SLC5A1 gene. Since CGGM can cause fatal diarrhea in the early neonatal period, timely diagnosis of the disease seems to be essential.


2019 ◽  
Vol 50 (05) ◽  
pp. 313-317 ◽  
Author(s):  
Vykuntaraju K. Gowda ◽  
Varunvenkat M. Srinivasan ◽  
Kapil Jehta ◽  
Maya D. Bhat

Abstract Background SLC25A19 gene mutations cause Amish congenital lethal microcephaly and bilateral striatal necrosis with polyneuropathy. We are reporting two cases of bilateral striatal necrosis with polyneuropathy due to SLC25A19 gene mutations. Methods A 36-month-old boy and a 5-year-old girl, unrelated, presented with recurrent episodes of flaccid paralysis and encephalopathy following nonspecific febrile illness. Examination showed dystonia and absent deep tendon reflexes. Results Nerve conduction studies showed an axonal polyneuropathy. Magnetic resonance imaging (MRI) of the brain in both cases showed signal changes in the basal ganglia. Next-generation sequencing revealed a novel homozygous missense variation c.910G>A (p.Glu304Lys) in the SLC25A19 gene in the boy and a homozygous mutation c.869T > A (p. Leu290Gln) in the SLC25A19 gene in the girl. Mutations were validated by Sanger sequencing, and carrier statuses of parents of both children were confirmed. Both children improved with thiamine supplementation. Conclusion If any child presents with recurrent encephalopathy with flaccid paralysis, dystonia, and neuropathy, a diagnosis of bilateral striatal necrosis with polyneuropathy due to SLC25A19 mutations should be considered and thiamine should be initiated.


Author(s):  
G N Subramanian ◽  
M Lavin ◽  
H A Homer

Abstract Premature loss of ovarian activity before 40 years of age is known as primary ovarian insufficiency (POI) and occurs in ∼1% of women. A more subtle decline in ovarian activity, known as premature ovarian ageing (POA), occurs in ∼10% of women. Despite the high prevalence of POA, very little is known regarding its genetic causation. Senataxin (SETX) is an RNA/DNA helicase involved in repair of oxidative stress-induced DNA damage. Homozygous mutation of SETX leads to the neurodegenerative disorder, ataxia oculomotor apraxia type 2 (AOA2). There have been reports of POI in AOA2 females suggesting a link between SETX and ovarian ageing. Here, we studied female mice lacking either one (Setx+/−) or both (Setx−/−) copies of SETX over a 12- to 14-month period. We find that DNA damage is increased in oocytes from 8-month-old Setx+/− and Setx−/− females compared with Setx+/+ oocytes leading to a marked reduction in all classes of ovarian follicles at least 4 months earlier than typically occurs in female mice. Furthermore, during a 12-month long mating trial, Setx+/− and Setx−/− females produced significantly fewer pups than Setx+/+ females from 7 months of age onwards. These data show that SETX is critical for preventing POA in mice, likely by preserving DNA integrity in oocytes. Intriguingly, heterozygous Setx loss causes an equally severe impact on ovarian ageing as homozygous Setx loss. Because heterozygous SETX disruption is less likely to produce systemic effects, SETX compromise could underpin some cases of insidious POA.


Author(s):  
Mohammad Akhoundi ◽  
Dahlia Chebbah ◽  
Denis Sereno ◽  
Anthony Marteau ◽  
Julie Jan ◽  
...  

Bed bugs, Cimex lectularius and C. hemipterus, are common blood-sucking ectoparasites of humans with a large geographical distribution, worldwide. In France, little is known about the status of bed bugs’ infestation and their resistance to insecticides, particularly, pyrethroids. Here, we aimed to find mutations in the kdr gene, known to be involved in resistance to insecticides. We gathered bed bugs from various infested locations, including 17 private houses, 12 HLM building complex, 29 apartments, 2 EHPAD, and 2 immigrants’ residences. A total of 1211 bed bugs were collected and morphologically identified as C. lectularius. Two fragments of the kdr gene, encompassing codons V419L and L925I, were successfully amplified for 156 specimens. We recorded sense mutation in the first amplified fragment (kdr1) in 89 out of 156 (57%) samples, in which in 61 out of 89 (68.5%) sequences, a change of valine (V) into leucine (L) V419L was observed. Within the second fragment (kdr2), a homozygous mutation was recorded in 73 out of 156 (46.7%) specimens at the codon 925. At this position, 43 out of 73 (58.9%) specimens had a sense mutation leading to the replacement of leucine (L) by isoleucine (I). Among 162 mutant sequences analyzed (89 for the kdr1 fragment and 73 for the kdr2 one), we detected single point mutation in 26.6%, while 73.4% presented the mutation in both kdr1 and kdr2 fragments. All modifications recorded in bed bug populations of Paris are described to be involved in the knockdown resistance (kdr) against pyrethroids.


Sign in / Sign up

Export Citation Format

Share Document