CD103 negative memory T cells may play important roles in making regulatory T‐cell‐enriched environments in skin tumours

2019 ◽  
Vol 33 (5) ◽  
pp. e211-e214
Author(s):  
Y. Nakamura ◽  
R. Watanabe ◽  
Z. Zhenjie ◽  
H. Koguchi‐Yoshioka ◽  
S. Vo ◽  
...  
2020 ◽  
Vol 14 (Supplement_1) ◽  
pp. S176-S177
Author(s):  
A Gamliel ◽  
L Werner ◽  
N Salamon ◽  
M Pinsker ◽  
B Weiss ◽  
...  

Abstract Background Memory T cells play an important role in mediating inflammatory responses in IBD. The integrin a4b7 is highly expressed on activated T cells, and is thought to direct homing of lymphocytes to the intestine, following its binding to MADCAM-1 expressed exclusively on intestinal endothelial cells. Since UC is characterised by oligoclonal expansion of specific T-cell clonotypes, we hypothesised that circulating memory T cells with gut-homing potential would exhibit unique T-cell receptor repertoire features. Methods Peripheral blood mononuclear cells were collected from 5 control subjects and 6 pediatric patients with active UC. Following CD3 MACS sorting cells were FACS sorted into a4b7 positive and a4b7 negative CD3+CD45RO+ memory T cells. DNA was Isolated from each subset and subjected to next-generation sequencing of the TCRB. This high-throughput platform employs massive parallel sequencing to process millions of rearranged T-cell receptor (TCR) products simultaneously, and permits an in-depth analysis of individual TCRs at the nucleotide level. Comparisons of different indices of diversity, CDR3 length and clonal biochemical characteristics were performed between a4b7 positive and a4b7 negative populations for each subject, and between controls and UC patients. Results PBMCs were isolated from active UC patients during endoscopic assessment. Four patients had a Mayo endoscopic score of 2, and two patients had a score of 1. Only one patient was treated with an immunosuppressive medication (azathioprine), and five out of six patients were treated with 5ASAs. Percentages of memory T cells (43.8 ± 12.3% vs. 32.2 ± 13.1%, p = 0.17) and a4b7 positive T cells (33.6 ± 15.7% vs. 36.0 ± 17.6%, p = 0.81) were comparable between controls and UC patients. Interestingly, a4b7 positive memory T cells displayed a polyclonal distribution, in both control subjects and in UC patients, without expansion of specific clones. Different indices of diversity, including shanon’s H, clonality index and entropy, were similar among controls and patients, both for a4b7 positive and a4b7 negative populations. Finally, clonal overlap between a4b7 positive and a4b7 negative memory T cells, for each subject was high, ranging between 30–50% for controls and 27–48% for UC patients. Conclusion a4b7 expressing memory T cells exhibited a polyclonal repertoire in both control subjects and patients with active UC, with high rates of overlap with a4b7 negative memory T cells. Our study, along with additional recent reports, challenge the dogma of the importance of a4b7 expression for T-cell migration to the gut, and may suggest that vedolizumab’s suppresses intestinal inflammation by blocking the trafficking of innate immune subsets.


2018 ◽  
Vol 14 (9) ◽  
pp. e1007289 ◽  
Author(s):  
Asma Ahmed ◽  
Vasista Adiga ◽  
Soumya Nayak ◽  
J. Anto Jesuraj Uday Kumar ◽  
Chirag Dhar ◽  
...  

2009 ◽  
Vol 88 (12) ◽  
pp. 1349-1359 ◽  
Author(s):  
Jung-Sik Kim ◽  
Jae-Il Lee ◽  
Jin-Young Shin ◽  
Su-Young Kim ◽  
Jun-Seop Shin ◽  
...  

Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 199
Author(s):  
Anna Schmidt ◽  
Dennis Lapuente

Current flu vaccines rely on the induction of strain-specific neutralizing antibodies, which leaves the population vulnerable to drifted seasonal or newly emerged pandemic strains. Therefore, universal flu vaccine approaches that induce broad immunity against conserved parts of influenza have top priority in research. Cross-reactive T cell responses, especially tissue-resident memory T cells in the respiratory tract, provide efficient heterologous immunity, and must therefore be a key component of universal flu vaccines. Here, we review recent findings about T cell-based flu immunity, with an emphasis on tissue-resident memory T cells in the respiratory tract of humans and different animal models. Furthermore, we provide an update on preclinical and clinical studies evaluating T cell-evoking flu vaccines, and discuss the implementation of T cell immunity in real-life vaccine policies.


Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1490
Author(s):  
Victoria Matyushenko ◽  
Irina Isakova-Sivak ◽  
Igor Kudryavtsev ◽  
Arina Goshina ◽  
Anna Chistyakova ◽  
...  

Background: New coronavirus SARS-CoV-2, a causative agent of the COVID-19 pandemic, has been circulating among humans since November 2019. Multiple studies have assessed the qualitative and quantitative characteristics of virus-specific immunity in COVID-19 convalescents, however, some aspects of the development of memory T-cell responses after natural SARS-CoV-2 infection remain uncovered. Methods: In most of published studies T-cell immunity to the new coronavirus is assessed using peptides corresponding to SARS-CoV-1 or SARS-CoV-2 T-cell epitopes, or with peptide pools covering various parts of the viral proteins. Here, we determined the level of CD4+ and CD8+ memory T-cell responses in COVID-19 convalescents by stimulating PBMCs collected 1 to 6 months after recovery with sucrose gradient-purified live SARS-CoV-2. IFNγ production by the central and effector memory helper and cytotoxic T cells was assessed by intracellular cytokine staining assay and flow cytometry. Results: Stimulation of PBMCs with live SARS-CoV-2 revealed IFNγ-producing T-helper effector memory cells with CD4+CD45RA−CCR7− phenotype, which persisted in circulation for up to 6 month after COVID-19. In contrast, SARS-CoV-2-specific IFNγ-secreting cytotoxic effector memory T cells were found at significant levels only shortly after the disease, but rapidly decreased over time. Conclusion: The stimulation of immune cells with live SARS-CoV-2 revealed a rapid decline in the pool of effector memory CD8+, but not CD4+, T cells after recovery from COVID-19. These data provide additional information on the development and persistence of cellular immune responses after natural infection, and can inform further development of T cell-based SARS-CoV-2 vaccines.


2021 ◽  
pp. 135245852110033
Author(s):  
Quentin Howlett-Prieto ◽  
Xuan Feng ◽  
John F Kramer ◽  
Kevin J Kramer ◽  
Timothy W Houston ◽  
...  

Objective: To determine the effect of long-term anti-CD20 B-cell-depleting treatment on regulatory T cell immune subsets that are subnormal in untreated MS patients. Methods: 30 clinically stable MS patients, before and over 38 months of ocrelizumab treatment, were compared to 13 healthy controls, 29 therapy-naïve MS, 9 interferon-β-treated MS, 3 rituximab-treated MS, and 3 rituximab-treated patients with other autoimmune inflammatory diseases. CD8, CD28, CD4, and FOXP3 expression in peripheral blood mononuclear cells was quantitated with flow cytometry. Results: CD8+ CD28− regulatory cells rose from one-third of healthy control levels before ocrelizumab treatment (2.68% vs 7.98%), normalized by 12 months (13.5%), and rose to 2.4-fold above healthy controls after 18 months of ocrelizumab therapy (19.0%). CD4+ FOXP3+ regulatory cells were lower in MS than in healthy controls (7.98%) and showed slight long-term decreases with ocrelizumab. CD8+ CD28− and CD4+ FOXP3+ regulatory T cell percentages in IFN-β-treated MS patients were between those of untreated MS and healthy controls. Interpretation: Long-term treatment with ocrelizumab markedly enriches CD8+ CD28− regulatory T cells and corrects the low levels seen in MS before treatment, while slightly decreasing CD4+ FOXP3+ regulatory T cells. Homeostatic enrichment of regulatory CD8 T cells provides a mechanism, in addition to B cell depletion, for the benefits of anti-CD20 treatment in MS.


Blood ◽  
2008 ◽  
Vol 111 (5) ◽  
pp. 2497-2498
Author(s):  
Susumu Nakae ◽  
Keisuke Oboki ◽  
Hirohisa Saito

IgE/antigen-FcϵRI crosslinking promotes antigen internalization and apoptosis in mouse mast cells. Dendritic cells uptake the apoptotic mast cells carrying internalized antigens, and thus can efficiently present the antigens to memory T cells.


Sign in / Sign up

Export Citation Format

Share Document