scholarly journals The Impact of UV Radiation onParameciumPopulations from Alpine Lakes

2017 ◽  
Vol 65 (2) ◽  
pp. 250-254 ◽  
Author(s):  
Barbara Kammerlander ◽  
Barbara Tartarotti ◽  
Bettina Sonntag
Keyword(s):  

Atmosphere ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 125 ◽  
Author(s):  
Brian Diffey

In the early 1970s, environmental conservationists were becoming concerned that a reduction in the thickness of the atmospheric ozone layer would lead to increased levels of ultraviolet (UV) radiation at ground level, resulting in higher population exposure to UV and subsequent harm, especially a rise in skin cancer. At the time, no measurements had been reported on the normal levels of solar UV radiation which populations received in their usual environment, so this lack of data, coupled with increasing concerns about the impact to human health, led to the development of simple devices that monitored personal UV exposure. The first and most widely used UV dosimeter was the polymer film, polysulphone, and this review describes its properties and some of the pioneering studies using the dosimeter that led to a quantitative understanding of human exposure to sunlight in a variety of behavioral, occupational, and geographical settings.



2016 ◽  
Vol 322-323 ◽  
pp. 60-66 ◽  
Author(s):  
Ivan Kubovský ◽  
František Kačík ◽  
Ladislav Reinprecht
Keyword(s):  


Author(s):  
Galina S. Bozhenkova ◽  
Alexandra N. Tarakanovskaya ◽  
Oksana D. Tarnovskaya ◽  
Roman V. Ashirov

The article is devoted to the production of polymer by metathesis ring-opening polymerization under the influence of ruthenium initiator of type of Hoveyda-Grubbs II generation. The monomer used the mixture of dimethyl ether norbornene-2;3-dicarboxylic acid. The monomer was prepared by the Diels-Alder reaction of dicyclopentadiene and dimethyl maleate. The polymer was prepared in bulk of the monomer mixture. In this paper we have studied the physical and mechanical properties polydimethyl ether of norbornene-2;3-dicarboxylic acid; and assessed the impact of environmental factors on the change in properties of the polymer. As environmental factors; light; UV radiation; water; 0.1 M hydrochloric acid were applied; and accelerated aging conditions; which were held in a climate chamber. During performance we found that maintaining the polymer samples in the UV light chamber led to the slight increase in flexural modulus. In contrast; the polymer storage in water and in a hydrochloric acid solution for two months resulted in a slight decrease in the modulus of elasticity in bending index. These factors did not affect the change in the glass transition temperature of the polymer. Under the conditions of accelerated aging conducted for 1; 2 and 6 days after two cycles we observed the drop in modulus for bending of 8.5%; after 6 cycles of 13%. The glass transition temperature of polydimethyl ether of norbornene-2;3-dicarboxylic acid after 6 cycles decreased by only 3.4% in the climatic chamber. Studies have shown that the resulting polymer is resistant to water; hydrochloric acid; light and UV radiation; as well as it saves properties at a sufficient level for operation at conditions of accelerated aging. It should be noted that the tested polymer was prepared without additives; stabilizers and antioxidants. The proposed polymer can be used as a structural material for machine parts; including bulky.For citation:Bozhenkova G.S.; Tarakanovskaya A.N.; Tarnovskaya O.D.; Ashirov R.V. Influence of environmental factors on physical-mechanical properties of polydimethyl ether of norborene -2;3-dicarboxylic acid. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2017. V. 60. N 5. P. 68-73



2005 ◽  
Vol 71 (9) ◽  
pp. 5004-5013 ◽  
Author(s):  
Hongyan Wu ◽  
Kunshan Gao ◽  
Virginia E. Villafañe ◽  
Teruo Watanabe ◽  
E. Walter Helbling

ABSTRACT To study the impact of solar UV radiation (UVR) (280 to 400 nm) on the filamentous cyanobacterium Arthrospira (Spirulina) platensis, we examined the morphological changes and photosynthetic performance using an indoor-grown strain (which had not been exposed to sunlight for decades) and an outdoor-grown strain (which had been grown under sunlight for decades) while they were cultured with three solar radiation treatments: PAB (photosynthetically active radiation [PAR] plus UVR; 280 to 700 nm), PA (PAR plus UV-A; 320 to 700 nm), and P (PAR only; 400 to 700 nm). Solar UVR broke the spiral filaments of A. platensis exposed to full solar radiation in short-term low-cell-density cultures. This breakage was observed after 2 h for the indoor strain but after 4 to 6 h for the outdoor strain. Filament breakage also occurred in the cultures exposed to PAR alone; however, the extent of breakage was less than that observed for filaments exposed to full solar radiation. The spiral filaments broke and compressed when high-cell-density cultures were exposed to full solar radiation during long-term experiments. When UV-B was screened off, the filaments initially broke, but they elongated and became loosely arranged later (i.e., there were fewer spirals per unit of filament length). When UVR was filtered out, the spiral structure hardly broke or became looser. Photosynthetic O2 evolution in the presence of UVR was significantly suppressed in the indoor strain compared to the outdoor strain. UVR-induced inhibition increased with exposure time, and it was significantly lower in the outdoor strain. The concentration of UV-absorbing compounds was low in both strains, and there was no significant change in the amount regardless of the radiation treatment, suggesting that these compounds were not effectively used as protection against solar UVR. Self-shading, on the other hand, produced by compression of the spirals over adaptive time scales, seems to play an important role in protecting this species against deleterious UVR. Our findings suggest that the increase in UV-B irradiance due to ozone depletion not only might affect photosynthesis but also might alter the morphological development of filamentous cyanobacteria during acclimation or over adaptive time scales.





1993 ◽  
Vol 1 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Warwick F. Vincent ◽  
Suzanne Roy

The continuing degradation of the Earth's ozone layer by atmospheric pollutants has generated concern about the impact of increased solar ultraviolet-B radiation (UV-B) on aquatic ecosystems. UV-B is a small (less than 1% of total energy) but highly active component of the solar spectrum that can penetrate to biologically significant depths in lakes and oceans. It has the potential to cause wide-ranging effects, including mutagenesis, chronic depression of key physiological processes, and acute physiological stress that may result in death. There are major uncertainties at present about the appropriate time scales and bioassay protocols for assessing such effects. Algal and cyanobacterial cells have four lines of defence against the toxic effects of UV-B. Some species avoid UV exposure by their choice of habitat or by migration strategies. Many species produce sunscreening pigments that filter out UV wavelengths; mycosporine-like amino acids are an especially important and ubiquitous class of such compounds. Most cells have a variety of defences against the toxic end products of UV radiation, such as radical scavenging by carotenoid pigments and superoxide dismutase. Finally, most cells have at least some ability to identify and repair the UV damage of DNA and other biomolecules. There is a large interspecific variability in the extent of each of these defence strategies. Continuing ozone depletion is not likely to cause an abrupt collapse of photosynthetic production, but may result in subtle, community-level responses that could ultimately impact on higher trophic levels.Key words: Arctic, Antarctic, photosynthesis, UV radiation, UV-B, ozone, atmospheric pollutants.



Author(s):  
Rajesh Bajpai ◽  
Manoj Semwal ◽  
C. P. Singh

The lichens are one of the most sensitive organism in nature among the different elements of biodiversity and can be affected more due to climate change. Lichens fulfil their water need from rain, fog and dew present in the atmosphere. The change in atmospheric temperature influence, to a greater extent, the thallus temperature and physiology of lichens which leads to emergence of new ecotype and finally the shift in a species. The impact of climatic factors on lichens ecophysiology, is different from higher plantsis due to the poikilohydric nature. The lichen bioindicator communities have been shown to exhibit correlation with climatic factors of an area. The changes in lichen biomass, frequency, diversity and indicatorcommunity indices, indicate changes in environmental gradients (temperature, humidity and UV radiation). A number of techniques regarding study the environmental and climatic change are available. However, the present correspondence hypothesized about some easy and low cost techniques to monitor climate change utilizing lichens. The overview will also leads to assess patterns of lichens responses with species representation and towards its understanding the current and future changes in climate of an area.



2021 ◽  
Vol 9 (12) ◽  
pp. 2429
Author(s):  
Charlotte Eich ◽  
Sven B. E. H. Pont ◽  
Corina P. D. Brussaard

Polar seas are under threat of enhanced UV-radiation as well as increasing shipping activities. Considering the ecological importance of marine viruses, it is timely to study the impact of UV-AB on Arctic phytoplankton host–virus interactions and also test the efficacy of ballast water (BW) UV-C treatment on virus infectivity. This study examined the effects of: (i) ecologically relevant doses of UV-AB radiation on Micromonas polaris RCC2258 and its virus MpoV-45T, and (ii) UV-C radiation (doses 25–800 mJ cm−2) on MpoV-45T and other temperate algal viruses. Total UV-AB exposure was 6, 12, 28 and 48 h (during the light periods, over 72 h total). Strongest reduction in algal growth and photosynthetic efficiency occurred for 28 and 48 h UV-AB treatments, and consequently the virus production rates and burst sizes were reduced by more than half (compared with PAR-only controls). For the shorter UV-AB exposed cultures, negative effects by UV (especially Fv/Fm) were overcome without impacting virus proliferation. To obtain the BW desired log−4 reduction in virus infectivity, a UV-C dose of at least 400 mJ cm−2 was needed for MpoV-45T and the temperate algal viruses. This is higher than the commonly used dose of 300 mJ cm−2 in BW treatment.



Author(s):  
Z G Habaeva ◽  
M T Gagloeva ◽  
V S Gappoeva
Keyword(s):  


Sign in / Sign up

Export Citation Format

Share Document