Effect of thermally assisted hydrodynamic cavitation (HC) processing on physical, nutritional, microbial quality, and pectin methyl esterase (PME) inactivation kinetics in orange juice at different time and temperatures

Author(s):  
Shalini S. Arya ◽  
Pavankumar R. More ◽  
Ruly Terán Hilares ◽  
Bárbara Pereira ◽  
Valdeir Arantes ◽  
...  
2020 ◽  
Vol 10 (21) ◽  
pp. 7542
Author(s):  
Patra Sourri ◽  
Anthoula A. Argyri ◽  
Efstathios Z. Panagou ◽  
George-John E. Nychas ◽  
Chrysoula C. Tassou

In this work, the inactivation kinetics of Alicyclobacillus acidoterrestris spores by temperature-assisted high hydrostatic pressure was assessed by means of the Weibull model. Spores from two A. acidoterrestris strains (a wild-type strain and a reference strain) were inoculated in commercial orange juice and subjected to high pressure levels (500 and 600 MPa) combined with four temperature regimes (25, 45, 60 and 70 °C) for time up to 30 min. Results showed that for a given high-pressure level spore inactivation was higher as temperature progressively increased. Furthermore, the Weibull model consistently produced satisfactory fit to the inactivation data based on the values of the root mean squared error (RMSE < 0.54 log colony-forming units (CFU)/mL) and the coefficient of determination (R2 > 0.90 in most cases). The shape of inactivation curves was concave upward (p < 1) for all temperature/high pressure levels tested, indicating rapid inactivation of the sensitive cells of the bacterium whereas the remaining ones adapted to high hydrostatic pressure (HHP) treatment. The values of the shape (p) and scale (δ) parameters of the Weibull model were dependent on the applied temperature for a given high pressure level and they were further described in a secondary model using first-order fitting curves to provide predictions of the surviving spore population at 55 and 65 °C. Results revealed a systematic over-prediction for the wild-type strain regardless of temperature and high pressure applied, whereas for the reference strain under-prediction was evident after 3 log-cycles reduction of the surviving bacteria spores. Overall, the results obtained indicate that the effectiveness of high hydrostatic pressure against A. acidoterrestris spores is strain-dependent and also underline the need for temperature-assisted HPP for effective spore inactivation during orange juice processing.


2016 ◽  
Vol 79 (4) ◽  
pp. 553-560 ◽  
Author(s):  
VINAYAK GHATE ◽  
AMIT KUMAR ◽  
WEIBIAO ZHOU ◽  
HYUN-GYUN YUK

ABSTRACT Blue light-emitting diodes (LEDs) have been known to produce an antibacterial effect on various pathogenic bacteria. To extend this application to foods, blue 460-nm LEDs were evaluated for their antibacterial effect on Salmonella in orange juice. A cocktail of Salmonella enterica serovars Gaminara, Montevideo, Newport, Typhimurium, and Saintpaul was inoculated into pasteurized orange juice and illuminated with 460-nm LEDs at irradiances of 92, 147.7, and 254.7 mW/cm2 and temperatures of 4, 12, and 20°C. Subsequently, linear, Weibull, and Gompertz models were fitted to the resultant survival curves. The color of the orange juice during illumination was also monitored. It was observed that irradiance and temperature both influenced the inactivation of Salmonella, which ranged from 2 to 5 log CFU/ml. The inactivation kinetics was best described by the Weibull model. An irradiance of 92 mW/cm2 and temperatures of 12 and 20°C were the most bactericidal combinations, with D-values of 1,580 and 2,013 J/cm2, respectively. Significant color changes were also observed after illumination; these changes could be minimized by choosing appropriate irradiance and temperature. These results demonstrate the potential of 460-nm LEDs for the preservation of fruit juices in the retail markets and their utility in minimizing the risk of salmonellosis.


Sign in / Sign up

Export Citation Format

Share Document