Novel bioactive formulation derived from the conditioned medium of mesenchymal stromal cells reduces under‐eye dark circles in human volunteers

Author(s):  
Samatha Bhat ◽  
Muthukumar Amirthalingam ◽  
Sathish Pai B ◽  
B V Meghana ◽  
Pawan Kumar Gupta ◽  
...  
2021 ◽  
Vol 66 (4) ◽  
pp. 5-12
Author(s):  
A. Rastorgueva ◽  
T. Astrelina ◽  
V. Brunchukov ◽  
D. Usupzhanova ◽  
I. Kobzeva ◽  
...  

Background: To compare the results of the use of mesenchymal stromal cells (MSCs) of human gingival mucosa and MSCs of rat gingival mucosa, their conditioned media, and to evaluate their effect on tissue regeneration in local radiation injury (LRI). Material and methods: The study included 120 white male Wistar rats weighing 210 ± 30 g at the age of 8–12 weeks, randomized into 6 groups (20 animals each): control (C), animals did not receive therapy; control with the introduction of culture medium concentrate (CM) three times for 1, 14, 21 days; administration of human gingival mucosa MSCs (HM) at a dose of 2 million per 1 kg three times for 1, 14, 21 days; administration of human gingival mucosa MSCS conditioned medium concentrate (HMCM) at a calculated dose of 2 million cells per 1 kg three times for 1, 14, 21 days; administration of rat gingival mucosal MSCs (RM) at a dose of 2 million cells per 1 kg three times for 1, 14, 21 days; administration of rat gingival mucosal MSCS (RMCM) conditioned medium concentrate at a calculated dose of 2 million cells per 1 kg three times for 1, 14, 21 days. Each laboratory animal was observed 17 times: on 1, 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98, 105, 112 day after the burn simulation. Histological (hematoxylin-eosin staining) and immunohistochemical (CD31, CD68, VEGF, PGP 9.5, MMP2,9, Collag 1, TIMP 2) studies were performed. LRI was modeled on an X-ray machine at a dose of 110 Gy. MSCs were cultured according to the standard method up to 3–5 passages, the conditioned medium was taken and concentrated 10 times. The immunophenotype of MSCs (CD34, CD45, CD90, CD105, CD73, HLA-DR) and viability (7‑ADD) were determined by flow cytofluorimetry. Results: In a comparative analysis with the control group (C), starting from the 42nd day of the study, a tendency to reduce the area of skin ulcers in animals in all groups was observed, despite the fact that not all days had statistically significant differences. On day 112th, complete healing of skin ulcers in the CM group was observed in 40 % of animals in the HM group – in 60 %, in the HMCM group – in 20 % of animals, in the RMCM group–20 %, and in the C and RM groups there were no animals with a prolonged wound defect. Positive expression of the VEGF marker was observed in groups C and CM on the 28th day and in experimental groups (HM, HMCM, RM, RMCM) on the 112th day. A statistically significant increase in the CD68 marker was observed in groups C, RM, and RMCM, while the remaining groups showed a decrease in the number of macrophages.


2020 ◽  
Vol 23 (12) ◽  
pp. 870-879
Author(s):  
Kosar Mohamed Ali ◽  
Fattah Hama Rahim Fattah ◽  
Shirwan Hamasalh Omar ◽  
Mohammed I M Gubari ◽  
Mahmoud Yousefifard ◽  
...  

Background: A definitive conclusion on the efficacy of mesenchymal stromal cells-derived conditioned medium (MSCs-CM) in pulmonary fibrosis has not yet been reached. Therefore, the present meta-analysis intends to investigate the efficacy of MSCs-CM administration on improvement of pulmonary fibrosis. Methods: An extensive search was performed on the Medline, Embase, Scopus and Web of Science databases by the end of August 2019. Outcomes in the present study included pulmonary fibrosis score, lung collagen deposition, lung collagen expression, transforming growth factor β1 (TGF-β1) expression and interleukin-6 expression. Finally, the data were pooled and an overall standardized mean difference (SMD) with a 95% confidence interval (CI) was reported. Results: Data from seven studies were included. Analyses showed that administration of MSCs-CM significantly improved pulmonary fibrosis (SMD = -2.36; 95% CI: -3.21, -1.51). MSCs-CM administration also attenuated lung collagen deposition (SMD = -1.70; 95% CI: -2.18, -1.23) and decreased expression of type I collagen (SMD = -6.27; 95% CI: -11.00, -1.55), type III collagen (SMD = -5.16; 95% CI: -9.86, -0.47), TGF- β1 (SMD = -3.36; 95% CI: - 5.62, -1.09) and interleukin-6 (SMD = -1.69; 95% CI: - 3.14, -0.24). Conclusion: The present meta-analysis showed that administration of MSCs-CM improves pulmonary fibrosis. It seems that the effect of MSCs-CM was mediated by reducing collagen deposition as well as inhibiting the production of inflammatory chemokines such as TGF-β1 and interleukin 6 (IL-6). Since there is no evidence on the efficacy of MSCs-CM in large animals, further studies are needed to translate the finding to clinical studies.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Luciana Souza-Moreira ◽  
Vinicius Cardoso Soares ◽  
Suelen da Silva Gomes Dias ◽  
Patricia T. Bozza

AbstractMesenchymal stromal cells (MSCs) are a potential therapy for many chronic inflammatory diseases due to their regenerative, immunologic and anti-inflammatory properties. The two-way dialogue between MSCs and macrophages is crucial to tissue regeneration and repair. Previous research demonstrated that murine adipose-derived MSC conditioned medium (ASCcm) reprograms macrophages to an M2-like phenotype which protects from experimental colitis and sepsis. Here, our focus was to determine the molecular mechanism of lipid droplet biogenesis in macrophages re-educated using ASCcm. Adipose-derived MSC conditioned medium promotes phosphorylation of AKT/mTOR pathway proteins in macrophages. Furthermore, increased expression of PPARγ, lipid droplet biogenesis and PGE2 synthesis were observed in M2-like phenotype macrophages (high expression of arginase 1 and elevated IL-10). Treatment with mTOR inhibitor rapamycin or PPARγ inhibitor GW9662 suppressed lipid droplets and PGE2 secretion. However, these inhibitors had no effect on arginase-1 expression. Rapamycin, but not GW9662, inhibit IL-10 secretion. In conclusion, we demonstrate major effects of ASCcm to reprogram macrophage immunometabolism through mTOR and PPARγ dependent and independent pathways.


2015 ◽  
Vol 4 (5) ◽  
pp. 448-458 ◽  
Author(s):  
Patrizia Danieli ◽  
Giuseppe Malpasso ◽  
Maria Chiara Ciuffreda ◽  
Elisabetta Cervio ◽  
Laura Calvillo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document