Cardiogenic shock and machine learning: A systematic review on prediction through clinical decision support softwares

Author(s):  
Rene Aleman ◽  
Sinal Patel ◽  
Jose Sleiman ◽  
Jose Navia ◽  
Cedric Sheffield ◽  
...  
2020 ◽  
Author(s):  
Victor Silva ◽  
Amanda Days Ramos Novo ◽  
Damires Souza ◽  
Alex Rêgo

Clinical decision support systems is a research area in which Machine Learning (ML) techniques can be applied. Nevertheless, specifically in assisting pneumonia decision making, the use of ML has not been so expressive. To help matters, this work aims to contribute to the evolution of the intersection of such areas by presenting a Systematic Review of the Literature. It provides results which may help to identify, interpret and evaluate how ML techniques have been applied and some research enhancements yet to be done.


2019 ◽  
Vol 43 (5) ◽  
pp. 1235-1253 ◽  
Author(s):  
Quinlan D. Buchlak ◽  
Nazanin Esmaili ◽  
Jean-Christophe Leveque ◽  
Farrokh Farrokhi ◽  
Christine Bennett ◽  
...  

2021 ◽  
Author(s):  
Emma Persad ◽  
Kerstin Jost ◽  
Antoine Honoré ◽  
David Forsberg ◽  
Karen Coste ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Sharare Taheri Moghadam ◽  
Farahnaz Sadoughi ◽  
Farnia Velayati ◽  
Seyed Jafar Ehsanzadeh ◽  
Shayan Poursharif

Abstract Background Clinical Decision Support Systems (CDSSs) for Prescribing are one of the innovations designed to improve physician practice performance and patient outcomes by reducing prescription errors. This study was therefore conducted to examine the effects of various CDSSs on physician practice performance and patient outcomes. Methods This systematic review was carried out by searching PubMed, Embase, Web of Science, Scopus, and Cochrane Library from 2005 to 2019. The studies were independently reviewed by two researchers. Any discrepancies in the eligibility of the studies between the two researchers were then resolved by consulting the third researcher. In the next step, we performed a meta-analysis based on medication subgroups, CDSS-type subgroups, and outcome categories. Also, we provided the narrative style of the findings. In the meantime, we used a random-effects model to estimate the effects of CDSS on patient outcomes and physician practice performance with a 95% confidence interval. Q statistics and I2 were then used to calculate heterogeneity. Results On the basis of the inclusion criteria, 45 studies were qualified for analysis in this study. CDSS for prescription drugs/COPE has been used for various diseases such as cardiovascular diseases, hypertension, diabetes, gastrointestinal and respiratory diseases, AIDS, appendicitis, kidney disease, malaria, high blood potassium, and mental diseases. In the meantime, other cases such as concurrent prescribing of multiple medications for patients and their effects on the above-mentioned results have been analyzed. The study shows that in some cases the use of CDSS has beneficial effects on patient outcomes and physician practice performance (std diff in means = 0.084, 95% CI 0.067 to 0.102). It was also statistically significant for outcome categories such as those demonstrating better results for physician practice performance and patient outcomes or both. However, there was no significant difference between some other cases and traditional approaches. We assume that this may be due to the disease type, the quantity, and the type of CDSS criteria that affected the comparison. Overall, the results of this study show positive effects on performance for all forms of CDSSs. Conclusions Our results indicate that the positive effects of the CDSS can be due to factors such as user-friendliness, compliance with clinical guidelines, patient and physician cooperation, integration of electronic health records, CDSS, and pharmaceutical systems, consideration of the views of physicians in assessing the importance of CDSS alerts, and the real-time alerts in the prescription.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii135-ii136
Author(s):  
John Lin ◽  
Michelle Mai ◽  
Saba Paracha

Abstract Glioblastoma multiforme (GBM), the most common form of glioma, is a malignant tumor with a high risk of mortality. By providing accurate survival estimates, prognostic models have been identified as promising tools in clinical decision support. In this study, we produced and validated two machine learning-based models to predict survival time for GBM patients. Publicly available clinical and genomic data from The Cancer Genome Atlas (TCGA) and Broad Institute GDAC Firehouse were obtained through cBioPortal. Random forest and multivariate regression models were created to predict survival. Predictive accuracy was assessed and compared through mean absolute error (MAE) and root mean square error (RMSE) calculations. 619 GBM patients were included in the dataset. There were 381 (62.9%) cases of recurrence/progression and 53 (8.7%) cases of disease-free survival. The MAE and RMSE values were 0.553 and 0.887 years respectively for the random forest regression model, and they were 1.756 and 2.451 years respectively for the multivariate regression model. Both models accurately predicted overall survival. Comparison of models through MAE, RMSE, and visual analysis produced higher accuracy values for random forest than multivariate linear regression. Further investigation on feature selection and model optimization may improve predictive power. These findings suggest that using machine learning in GBM prognostic modeling will improve clinical decision support. *Co-first authors.


2018 ◽  
Vol 35 (14) ◽  
pp. 2458-2465 ◽  
Author(s):  
Johanna Schwarz ◽  
Dominik Heider

Abstract Motivation Clinical decision support systems have been applied in numerous fields, ranging from cancer survival toward drug resistance prediction. Nevertheless, clinical decision support systems typically have a caveat: many of them are perceived as black-boxes by non-experts and, unfortunately, the obtained scores cannot usually be interpreted as class probability estimates. In probability-focused medical applications, it is not sufficient to perform well with regards to discrimination and, consequently, various calibration methods have been developed to enable probabilistic interpretation. The aims of this study were (i) to develop a tool for fast and comparative analysis of different calibration methods, (ii) to demonstrate their limitations for the use on clinical data and (iii) to introduce our novel method GUESS. Results We compared the performances of two different state-of-the-art calibration methods, namely histogram binning and Bayesian Binning in Quantiles, as well as our novel method GUESS on both, simulated and real-world datasets. GUESS demonstrated calibration performance comparable to the state-of-the-art methods and always retained accurate class discrimination. GUESS showed superior calibration performance in small datasets and therefore may be an optimal calibration method for typical clinical datasets. Moreover, we provide a framework (CalibratR) for R, which can be used to identify the most suitable calibration method for novel datasets in a timely and efficient manner. Using calibrated probability estimates instead of original classifier scores will contribute to the acceptance and dissemination of machine learning based classification models in cost-sensitive applications, such as clinical research. Availability and implementation GUESS as part of CalibratR can be downloaded at CRAN.


Sign in / Sign up

Export Citation Format

Share Document