scholarly journals NCOG-31. DEVELOPMENT AND EVALUATION OF PROGNOSTIC MODELS TO PREDICT SURVIVAL OF PATIENTS WITH GLIOBLASTOMA MULTIFORME

2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii135-ii136
Author(s):  
John Lin ◽  
Michelle Mai ◽  
Saba Paracha

Abstract Glioblastoma multiforme (GBM), the most common form of glioma, is a malignant tumor with a high risk of mortality. By providing accurate survival estimates, prognostic models have been identified as promising tools in clinical decision support. In this study, we produced and validated two machine learning-based models to predict survival time for GBM patients. Publicly available clinical and genomic data from The Cancer Genome Atlas (TCGA) and Broad Institute GDAC Firehouse were obtained through cBioPortal. Random forest and multivariate regression models were created to predict survival. Predictive accuracy was assessed and compared through mean absolute error (MAE) and root mean square error (RMSE) calculations. 619 GBM patients were included in the dataset. There were 381 (62.9%) cases of recurrence/progression and 53 (8.7%) cases of disease-free survival. The MAE and RMSE values were 0.553 and 0.887 years respectively for the random forest regression model, and they were 1.756 and 2.451 years respectively for the multivariate regression model. Both models accurately predicted overall survival. Comparison of models through MAE, RMSE, and visual analysis produced higher accuracy values for random forest than multivariate linear regression. Further investigation on feature selection and model optimization may improve predictive power. These findings suggest that using machine learning in GBM prognostic modeling will improve clinical decision support. *Co-first authors.

Author(s):  
Halima EL Hamdaoui ◽  
Said Boujraf ◽  
Nour El Houda Chaoui ◽  
Badr Alami ◽  
Mustapha Maaroufi

heart disease is a major cause of death worldwide. Thus, diagnosis and prediction of heart disease remain mandatory. Clinical decision support systems based on machine learning techniques have become the primary tool to assist clinicians and contribute to automated diagnosis. This paper aims to predict heart disease using Random Forest algorithm enhanced with the boosting algorithm Adaboost. The model is trained and tested on University of California Irvine (UCI) Cleveland and Statlog heart disease datasets using the most relevant features 14 attributes. The result shows that Random Forest algorithm combined with AdaBoost algorithm achieved higher accuracy than applying only Radom Forest algorithm, 96.16%, 95.98%, respectively. We compare our suggested model to report machine learning classifiers. Indeed, the obtained result is supporting the efficiency and validity of our model. Besides, the proposed model achieved high accuracy compared to existing studies in the literature that confirmed that a clinical decision support system could be used to predict heart disease based on machine learning algorithms.


2018 ◽  
Vol 35 (14) ◽  
pp. 2458-2465 ◽  
Author(s):  
Johanna Schwarz ◽  
Dominik Heider

Abstract Motivation Clinical decision support systems have been applied in numerous fields, ranging from cancer survival toward drug resistance prediction. Nevertheless, clinical decision support systems typically have a caveat: many of them are perceived as black-boxes by non-experts and, unfortunately, the obtained scores cannot usually be interpreted as class probability estimates. In probability-focused medical applications, it is not sufficient to perform well with regards to discrimination and, consequently, various calibration methods have been developed to enable probabilistic interpretation. The aims of this study were (i) to develop a tool for fast and comparative analysis of different calibration methods, (ii) to demonstrate their limitations for the use on clinical data and (iii) to introduce our novel method GUESS. Results We compared the performances of two different state-of-the-art calibration methods, namely histogram binning and Bayesian Binning in Quantiles, as well as our novel method GUESS on both, simulated and real-world datasets. GUESS demonstrated calibration performance comparable to the state-of-the-art methods and always retained accurate class discrimination. GUESS showed superior calibration performance in small datasets and therefore may be an optimal calibration method for typical clinical datasets. Moreover, we provide a framework (CalibratR) for R, which can be used to identify the most suitable calibration method for novel datasets in a timely and efficient manner. Using calibrated probability estimates instead of original classifier scores will contribute to the acceptance and dissemination of machine learning based classification models in cost-sensitive applications, such as clinical research. Availability and implementation GUESS as part of CalibratR can be downloaded at CRAN.


Author(s):  
Manoj A. Thomas ◽  
Diya Suzanne Abraham ◽  
Dapeng Liu

Translational research (TR) is the harnessing of knowledge from basic science and clinical research to advance healthcare. As a sister discipline, translational informatics (TI) concerns the application of informatics theories, methods, and frameworks to TR. This chapter builds upon TR concepts and aims to advance the use of machine learning (ML) and data analytics for improving clinical decision support. A federated machine learning (FML) architecture is described to aggregate multiple ML endpoints, and intermediate data analytic processes and products to output high quality knowledge discovery and decision making. The proposed architecture is evaluated for its operational performance based on three propositions, and a case for clinical decision support in the prediction of adult Sepsis is presented. The chapter illustrates contributions to the advancement of FML and TI.


2019 ◽  
Vol 892 ◽  
pp. 274-283
Author(s):  
Mohammed Ashikur Rahman ◽  
Afidalina Tumian

Now a day, clinical decision support systems (CDSS) are widely used in the cardiac care due to the complexity of the cardiac disease. The objective of this systematic literature review (SLR) is to identify the most common variables and machine learning techniques used to build machine learning-based clinical decision support system for cardiac care. This SLR adopts the Preferred Reporting Item for Systematic Review and Meta-Analysis (PRISMA) format. Out of 530 papers, only 21 papers met the inclusion criteria. Amongst the 22 most common variables are age, gender, heart rate, respiration rate, systolic blood pressure and medical information variables. In addition, our results have shown that Simplified Acute Physiology Score (SAPS), Sequential Organ Failure Assessment (SOFA) and Acute Physiology and Chronic Health Evaluation (APACHE) are some of the most common assessment scales used in CDSS for cardiac care. Logistic regression and support vector machine are the most common machine learning techniques applied in CDSS to predict mortality and other cardiac diseases like sepsis, cardiac arrest, heart failure and septic shock. These variables and assessment tools can be used to build a machine learning-based CDSS.


2020 ◽  
Vol 26 (5) ◽  
pp. 584-595 ◽  
Author(s):  
N. Peiffer-Smadja ◽  
T.M. Rawson ◽  
R. Ahmad ◽  
A. Buchard ◽  
P. Georgiou ◽  
...  

PLoS ONE ◽  
2019 ◽  
Vol 14 (11) ◽  
pp. e0225442
Author(s):  
Julian Gruendner ◽  
Thorsten Schwachhofer ◽  
Phillip Sippl ◽  
Nicolas Wolf ◽  
Marcel Erpenbeck ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document