scholarly journals The use of protein binders and sorghum crisps as potential ingredients in a cereal bar for dogs

Author(s):  
Julia Guazzelli Pezzali ◽  
Weilun Tsai ◽  
Kadri Koppel ◽  
Charles Gregory Aldrich
Keyword(s):  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Takahiro Morito ◽  
Ryuichi Harada ◽  
Ren Iwata ◽  
Yiqing Du ◽  
Nobuyuki Okamura ◽  
...  

AbstractBrain positron emission tomography (PET) imaging with radiolabelled proteins is an emerging concept that potentially enables visualization of unique molecular targets in the brain. However, the pharmacokinetics and protein radiolabelling methods remain challenging. Here, we report the performance of an engineered, blood–brain barrier (BBB)-permeable affibody molecule that exhibits rapid clearance from the brain, which was radiolabelled using a unique fluorine-18 labelling method, a cell-free protein radiosynthesis (CFPRS) system. AS69, a small (14 kDa) dimeric affibody molecule that binds to the monomeric and oligomeric states of α-synuclein, was newly designed for brain delivery with an apolipoprotein E (ApoE)-derived brain shuttle peptide as AS69-ApoE (22 kDa). The radiolabelled products 18F-AS69 and 18F-AS69-ApoE were successfully synthesised using the CFPRS system. Notably, 18F-AS69-ApoE showed higher BBB permeability than 18F-AS69 in an ex vivo study at 10 and 30 min post injection and was partially cleared from the brain at 120 min post injection. These results suggest that small, a brain shuttle peptide-fused fluorine-18 labelled protein binders can potentially be utilised for brain molecular imaging.


iScience ◽  
2021 ◽  
Vol 24 (2) ◽  
pp. 102104
Author(s):  
Yunjin Song ◽  
Hoibin Jeong ◽  
Song-Rae Kim ◽  
Yiseul Ryu ◽  
Jonghwi Baek ◽  
...  

2012 ◽  
Vol 404 (6-7) ◽  
pp. 1643-1651 ◽  
Author(s):  
Karin Fromell ◽  
Pontus Forsberg ◽  
Mikael Karlsson ◽  
Karin Larsson ◽  
Fredrik Nikolajeff ◽  
...  

2011 ◽  
Vol 8 (7) ◽  
pp. 551-558 ◽  
Author(s):  
Karen Colwill ◽  
◽  
Susanne Gräslund

2020 ◽  
Author(s):  
Tae Yoon Kim ◽  
Jeong Seok Cha ◽  
Hoyoung Kim ◽  
Yoonjoo Choi ◽  
Hyun-Soo Cho ◽  
...  

AbstractA protein binder with a desired epitope and binding affinity is critical to the development of therapeutic agents. Here we present computationally-guided design and affinity improvement of a protein binder recognizing a specific site on domain IV of human epidermal growth factor receptor 2 (HER2). As a model, a protein scaffold composed of Leucine-rich repeat (LRR) modules was used. We designed protein binders which appear to bind a target site on domain IV using a computational method. Top 10 designs were expressed and tested with binding assays, and a lead with a low micro-molar binding affinity was selected. Binding affinity of the selected lead was further increased by two-orders of magnitude through mutual feedback between computational and experimental methods. The utility and potential of our approach was demonstrated by determining the binding interface of the developed protein binder through its crystal structure in complex with the HER2 domain IV.


Stroke ◽  
2020 ◽  
Vol 51 (Suppl_1) ◽  
Author(s):  
Robert Mikulik ◽  
Hana Petroková ◽  
Josef Mašek ◽  
Milan Kuchar ◽  
Andrea Vítecková Wünschová ◽  
...  

Introduction: Direct clot targeting represents attractive concept for clot imaging as well as targeted delivery of drugs, e.g. thrombolytics. Small protein binders attached to nanoliposomes may target thrombi and deliver drugs although selective affinity to fibrin and not fibrinogen is the main challenge. Methods: For identification and preparation of fibrin-specific artificial protein binders derived from scaffolds of albumin-binding domain (ABD) of streptococcal protein G, a highly complex ABD-derived combinatorial library in combination with ribosome display selection was used. In vitro models were used to document delivery of nanoliposomes to human thrombi. Results: A recombinant target as a stretch of three identical fibrin fragments of 16 amino acid peptides of the Bβ chain fused to TolA protein carrying polyhistidylated tag and Avitag was constructed. Ribosome display was followed by large-scale ELISA screening of protein binders. Only four protein variants had selective affinity to human fibrin - see figure 1A. The most selective, variant D7, was modified by C-terminal FLAG/His 6 or His 6 /His 6 tag in order to be attached onto the surface of nanoliposomes. The electron microscopy then confirmed the structure of nanoliposome-binder particles. Isothermal titration calorimetry provided dissociation constant for liposome-binder metallochelating bond in the range 10 -7 to 10 -9 for mono- and double-HisTag forms. In vitro, in silicone replica of small diameter artery, the confocal and scanning electron microscopy confirmed a successful binding of D7-attached- to-nanoliposomes to fibrin fibres, see figure 1B. Conclusions: We developed binders relatively selective to fibrin, attached them to nanoliposomes, and documented targeting of fibrin in vitro. As the next step, selectivity needs to be now documented in animal studies.


2008 ◽  
Vol 22 (10) ◽  
pp. 3417-3417
Author(s):  
Ángel M. Cuesta ◽  
David Sánchez‐Martín ◽  
Laura Sanz ◽  
Luis Álvarez‐Vallina
Keyword(s):  

Author(s):  
Gustavo Aguilar ◽  
M. Alessandra Vigano ◽  
Markus Affolter ◽  
Shinya Matsuda

Sign in / Sign up

Export Citation Format

Share Document