Brazilian green propolis induced apoptosis in human lung cancer A549 cells through mitochondrial-mediated pathway

2015 ◽  
Vol 67 (10) ◽  
pp. 1448-1456 ◽  
Author(s):  
Yahima Frión-Herrera ◽  
Alexis Díaz-García ◽  
Jenny Ruiz-Fuentes ◽  
Hermis Rodríguez-Sánchez ◽  
José Maurício Sforcin
2012 ◽  
Vol 20 (2) ◽  
pp. 177-182 ◽  
Author(s):  
Xiao-Hong Zhang ◽  
Nan Zhang ◽  
Jian-Mei Lu ◽  
Qing-Zhong Kong ◽  
Yun-Feng Zhao

2019 ◽  
Vol 19 (12) ◽  
pp. 1454-1462 ◽  
Author(s):  
Nana Niu ◽  
Tingli Qu ◽  
Jinfang Xu ◽  
Xiaolin Lu ◽  
Graham J. Bodwell ◽  
...  

Background: Lung cancer is one of the most prevalent malignancies and thus the development of novel therapeutic agents for managing lung cancer is imperative. Tetrandrine, a bis-benzyltetrahydroisoquinoline alkaloid isolated from Stephania tetrandra S. Moore, has been found to exert cytotoxic effects on cancerous cells. Methods: A series of 5-alkynyltetrandrine derivatives was synthesized via the Sonogashira cross-coupling reactions and evaluated as potential anti-tumor agents. The anti-tumor activities of 12 compounds on lung cancer cells (A549) were evaluated using the MTT method. The population of apoptotic cells was measured using a TUNEL assay. Real-time PCR quantified the gene expression levels of Bcl-2, Bax, survivin and caspase-3. The content of Cyt-C was detected using a Human Cyt-C ELISA kit. Results: Most of these compounds exhibited better activities than tetrandrine itself on A549 cells. Among them, compound 7 showed the highest cytotoxicity among the tested compounds against human lung adenocarcinoma A549 cells with an IC50 of 2.94 µM. Preliminary mechanistic studies indicated that compound 7 induced apoptosis of human lung cancer A549 cells and increased the level of the proapoptotic gene Bax, release of Cyt-C from mitochondria and activation of caspase-3 genes. Conclusion: The results suggest that compound 7 exerts its antitumor activity against A549 cells through the induction of the intrinsic (mitochondrial) apoptotic pathway. These findings will contribute to the future design of more effective anti-tumor agents in lung cancer therapy.


2011 ◽  
Vol 55 (2) ◽  
pp. 300-309 ◽  
Author(s):  
Cheng-Yun Jin ◽  
Cheol Park ◽  
Hye Jin Hwang ◽  
Gi-Young Kim ◽  
Byung Tae Choi ◽  
...  

2020 ◽  
Vol 20 (5) ◽  
pp. 372-381
Author(s):  
Yoshiaki Sato ◽  
Hironori Yoshino ◽  
Eichi Tsuruga ◽  
Ikuo Kashiwakura

Background: Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) play key roles in the antiviral response, but recent works show that RLR activation elicits anticancer activity as well, including apoptosis. Previously, we demonstrated that the anticancer activity of the RLR agonist Poly(I:C)-HMW/LyoVec™ [Poly(I:C)-HMW] against human lung cancer cells was enhanced by cotreatment with ionizing radiation (IR). In addition, cotreatment with Poly(I:C)-HMW and IR induced apoptosis in a Fas-independent manner, and increased Fas expression on the cell surface. Objective: The current study investigated the resultant hypothesis that Fas ligand (FasL) may enhance apoptosis in lung cancer cells cotreated with Poly(I:C)-HMW+IR. Methods: FasL was added into culture medium at 24 h following cotreatment with Poly(I:C)- HMW+IR, after upregulation of cell surface Fas expression on human lung cancer cells A549 and H1299 have already been discussed. Results: FasL enhanced the apoptosis of A549 and H1299 cells treated with Poly(I:C)-HMW+IR. Similarly, IR alone - and not Poly(I:C)-HMW - resulted in the upregulation of cell surface Fas expression followed by a high response to FasL-induced apoptosis, thus suggesting that the high sensitivity of cells treated with Poly(I:C)-HMW+IR to FasL-induced apoptosis resulted from the cellular response to IR. Finally, knockdown of Fas by siRNA confirmed that the high response of treated cells to FasL-induced apoptosis is dependent on Fas expression. Conclusion: In summary, the present study indicates that upregulated Fas expression following cotreatment with Poly(I:C)-HMW and IR is responsive to FasL-induced apoptosis, and a combination of RLR agonist, IR, and FasL could be a potential promising cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document