When firms embrace science: university alliances and firm drug development pipeline

Author(s):  
Kremena Slavova
Author(s):  
Tanay Dalvi ◽  
Bhaskar Dewangan ◽  
Rudradip Das ◽  
Jyoti Rani ◽  
Suchita Dattatray Shinde ◽  
...  

: The most common reason behind dementia is Alzheimer’s disease (AD) and it is predicted to be the third lifethreatening disease apart from stroke and cancer for the geriatric population. Till now only four drugs are available in the market for symptomatic relief. The complex nature of disease pathophysiology and lack of concrete evidences of molecular targets are the major hurdles for developing new drug to treat AD. The the rate of attrition of many advanced drugs at clinical stages, makes the de novo discovery process very expensive. Alternatively, Drug Repurposing (DR) is an attractive tool to develop drugs for AD in a less tedious and economic way. Therefore, continuous efforts are being made to develop a new drug for AD by repursing old drugs through screening and data mining. For example, the survey in the drug pipeline for Phase III clinical trials (till February 2019) which has 27 candidates, and around half of the number are drugs which have already been approved for other indications. Although in the past the drug repurposing process for AD has been reviewed in the context of disease areas, molecular targets, there is no systematic review of repurposed drugs for AD from the recent drug development pipeline (2019-2020). In this manuscript, we are reviewing the clinical candidates for AD with emphasis on their development history including molecular targets and the relevance of the target for AD.


MedChemComm ◽  
2015 ◽  
Vol 6 (1) ◽  
pp. 13-23 ◽  
Author(s):  
Inés González-Gil ◽  
Debora Zian ◽  
Henar Vázquez-Villa ◽  
Silvia Ortega-Gutiérrez ◽  
María L. López-Rodríguez

The current status of the LPA1receptor and its ligands in the drug development pipeline is reviewed.


2020 ◽  
Vol 64 (7) ◽  
Author(s):  
E. D. Pieterman ◽  
M. J. Sarink ◽  
C. Sala ◽  
S. T. Cole ◽  
J. E. M. de Steenwinkel ◽  
...  

ABSTRACT One of the reasons for the lengthy tuberculosis (TB) treatment is the difficulty to treat the nonmultiplying mycobacterial subpopulation. In order to assess the ability of (new) TB drugs to target this subpopulation, we need to incorporate dormancy models in our preclinical drug development pipeline. In most available dormancy models, it takes a long time to create a dormant state, and it is difficult to identify and quantify this nonmultiplying condition. The Mycobacterium tuberculosis 18b strain might overcome some of these problems, because it is dependent on streptomycin for growth and becomes nonmultiplying after 10 days of streptomycin starvation but still can be cultured on streptomycin-supplemented culture plates. We developed our 18b dormancy time-kill kinetics model to assess the difference in the activity of isoniazid, rifampin, moxifloxacin, and bedaquiline against log-phase growth compared to the nonmultiplying M. tuberculosis subpopulation by CFU counting, including a novel area under the curve (AUC)-based approach as well as time-to-positivity (TTP) measurements. We observed that isoniazid and moxifloxacin were relatively more potent against replicating bacteria, while rifampin and high-dose bedaquiline were equally effective against both subpopulations. Moreover, the TTP data suggest that including a liquid culture-based method could be of additional value, as it identifies a specific mycobacterial subpopulation that is nonculturable on solid media. In conclusion, the results of our study underline that the time-kill kinetics 18b dormancy model in its current form is a useful tool to assess TB drug potency and thus has its place in the TB drug development pipeline.


Nanomedicine ◽  
2020 ◽  
Vol 15 (26) ◽  
pp. 2539-2542
Author(s):  
Alexsandra Conceição Apolinário ◽  
Amanda Soares Hirata ◽  
Rodrigo dos Anjos Miguel ◽  
Leticia Veras Costa-Lotufo ◽  
Adalberto Pessoa ◽  
...  

Author(s):  
Jeffrey Cummings ◽  
Travis Morstorf ◽  
Garam Lee

2021 ◽  
Author(s):  
Pascal Johann ◽  
Dominic Lenz ◽  
Markus Ries

Abstract Background: Glioblastoma multiforme (GBM) is the most common malignant brain tumor among adult patients and represents an almost universally fatal disease. Novel therapies for GBM are being developed under the orphan drug legislation and the knowledge on the molecular makeup of this disease has been increasing rapidly. However, the clinical outcomes in GBM patients with currently available therapies are still dismal. An insight into the current drug development pipeline for GBM is therefore of particular interest. Objectives: To provide a quantitative clinical-regulatory insight into the status of FDA orphan drug designations for compounds intended to treat GBM. Methods: Quantitative cross-sectional analysis of the U.S. Food and Drug Administration Orphan Drug Product database between 1983 and 2020. STROBE criteria were respected. Results: Four orphan drugs out of 161 (2,4%) orphan drug designations were approved for the treatment for GBM by the FDA between 1983 and 2020. Fourteen orphan drug designations were subsequently withdrawn for unknown reasons. The number of orphan drug designations per year shows a growing trend. In the last decade, the therapeutic mechanism of action of designated compounds intended to treat glioblastoma shifted from cytotoxic drugs (median year of designation 2008) to immunotherapeutic approaches and small molecules (median year of designation 2014 and 2015 respectively) suggesting an increased focus on precision in the therapeutic mechanism of action for compounds the development pipeline. Conclusion: Despite the fact that current pharmacological treatment options in GBM are sparse, the drug development pipeline is steadily growing. In particular, the surge of designated immunotherapies detected in the last years raises the hope that elaborate combination possibilities between classical therapeutic backbones (radiotherapy) and novel, currently experimental therapeutics may help to provide better therapies for this deadly disease in the future.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0252924
Author(s):  
Pascal Johann ◽  
Dominic Lenz ◽  
Markus Ries

Background Glioblastoma (GBM) is the most common malignant brain tumour among adult patients and represents an almost universally fatal disease. Novel therapies for GBM are being developed under the orphan drug legislation and the knowledge on the molecular makeup of this disease has been increasing rapidly. However, the clinical outcomes in GBM patients with currently available therapies are still dismal. An insight into the current drug development pipeline for GBM is therefore of particular interest. Objectives To provide a quantitative clinical-regulatory insight into the status of FDA orphan drug designations for compounds intended to treat GBM. Methods Quantitative cross-sectional analysis of the U.S. Food and Drug Administration Orphan Drug Product database between 1983 and 2020. STROBE criteria were respected. Results Four orphan drugs out of 161 (2,4%) orphan drug designations were approved for the treatment for GBM by the FDA between 1983 and 2020. Fourteen orphan drug designations were subsequently withdrawn for unknown reasons. The number of orphan drug designations per year shows a growing trend. In the last decade, the therapeutic mechanism of action of designated compounds intended to treat glioblastoma shifted from cytotoxic drugs (median year of designation 2008) to immunotherapeutic approaches and small molecules (median year of designation 2014 and 2015 respectively) suggesting an increased focus on precision in the therapeutic mechanism of action for compounds the development pipeline. Conclusion Despite the fact that current pharmacological treatment options in GBM are sparse, the drug development pipeline is steadily growing. In particular, the surge of designated immunotherapies detected in the last years raises the hope that elaborate combination possibilities between classical therapeutic backbones (radiotherapy and chemotherapy) and novel, currently experimental therapeutics may help to provide better therapies for this deadly disease in the future.


Sign in / Sign up

Export Citation Format

Share Document