scholarly journals Role of inorganic nitrate and nitrite in driving nitric oxide-cGMP-mediated inhibition of platelet aggregation in vitro and in vivo

2014 ◽  
Vol 12 (11) ◽  
pp. 1880-1889 ◽  
Author(s):  
G. L. Apostoli ◽  
A. Solomon ◽  
M. J. Smallwood ◽  
P. G. Winyard ◽  
M. Emerson
Biomedicines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 420
Author(s):  
Su-Jung Hwang ◽  
Ye-Seul Song ◽  
Hyo-Jong Lee

Kushen (Radix Sophorae flavescentis) is used to treat ulcerative colitis, tumors, and pruritus. Recently, phaseolin, formononetin, matrine, luteolin, and quercetin, through a network pharmacology approach, were tentatively identified as five bioactive constituents responsible for the anti-inflammatory effects of S. flavescentis. However, the role of phaseolin (one of the primary components of S. flavescentis) in the direct regulation of inflammation and inflammatory processes is not well known. In this study, the beneficial role of phaseolin against inflammation was explored in lipopolysaccharide (LPS)-induced inflammation models of RAW 264.7 macrophages and zebrafish larvae. Phaseolin inhibited LPS-mediated production of nitric oxide (NO) and the expression of inducible nitric oxide synthase (iNOS), without affecting cell viability. In addition, phaseolin suppressed pro-inflammatory mediators such as cyclooxygenase 2 (COX-2), interleukin-1β (IL-1β), tumor necrosis factor α (TNF-α), monocyte chemoattractant protein-1 (MCP-1), and interleukin-6 (IL-6) in a dose-dependent manner. Furthermore, phaseolin reduced matrix metalloproteinase (MMP) activity as well as macrophage adhesion in vitro and the recruitment of leukocytes in vivo by downregulating Ninjurin 1 (Ninj1), an adhesion molecule. Finally, phaseolin inhibited the nuclear translocation of nuclear factor-kappa B (NF-κB). In view of the above, our results suggest that phaseolin could be a potential therapeutic candidate for the management of inflammation.


Author(s):  
Maria Cristina Budani ◽  
Gian Mario Tiboni

Nitric oxide (NO) is formed during the oxidation of L-arginine to L-citrulline by the action of multiple isoenzymes of NO synthase (NOS): neuronal NOS (nNOS), endotelial NOS (eNOS), and inducible NOS (iNOS). NO plays a relevant role in the vascular endothelium, in central and peripheral neurons, and in immunity and inflammatory systems. In addition, several authors showed a consistent contribution of NO to different aspects of the reproductive physiology. The aim of the present review is to analyse the published data on the role of NO within the ovary. It has been demonstrated that the multiple isoenzymes of NOS are expressed and localized in the ovary of different species. More to the point, a consistent role was ascribed to NO in the processes of steroidogenesis, folliculogenesis, and oocyte meiotic maturation in in vitro and in vivo studies using animal models. Unfortunately, there are few nitric oxide data for humans; there are preliminary data on the implication of nitric oxide for oocyte/embryo quality and in-vitro fertilization/embryo transfer (IVF/ET) parameters. NO plays a remarkable role in the ovary, but more investigation is needed, in particular in the context of human ovarian physiology.


Author(s):  
Mihir K Patel ◽  
Kiranj K. Chaudagar ◽  
Anita A. Mehta

Objective: Although recent advances in the treatment of congestive heart disease, mortality among patients’ remains a questionable remark. Therefore, we evaluated the role of capsaicin on in vitro and ex vivo platelet aggregation induced by Adenosine Di-Phosphate (ADP) as well as in in vivo thrombosis models and role of NO, KATP was also identified in the capsaicin-induced anti-platelet animal model as well as in vivo model of arterial thrombosis.Methods: According to body weight wistar rats were divided into five groups. Group I and Group II was treated with saline and capsaicin (3 mg/kg, i. v), while animals from Group III were treated with N(ω)-nitro-L-arginine methyl ester (L-NAME) (30 mg/kg, i. v) 30 min before administration of capsaicin (3 mg/kg, i. v). Group IV animals were treated with glibenclamide (10 mg/kg,i. v) 30 min before administration of capsaicin (3 mg/kg, i. v). Group V was considered as a positive control and administered clopidogrel (30 mg/kg, p. o). Animals were subjected for in vitro, ex-vivo platelet aggregation assay. ADP (30µM) was utilized as an aggregating agent in these experiments. After these assays; animals of each group were subjected for subaqueous tail bleeding time in a rat model and FeCl3-induced arterial thrombosis model in rats.Results: In ADP-induced in vitro platelet aggregation, a significant reduction in % platelet aggregation was observed at 50µM (64.35±4.641) and 100µM (52.72±4.192) concentration of capsaicin as compared to vehicle control (85.82±3.716). Capsaicin (3 mg/kg, i. v) also showed a significant reduction (49.53±4.075) in ex-vivo ADP-induced platelet aggregation as compared to vehicle control (89.38±2.057). In FeCl3 induced arterial thrombosis model, Capsaicin (3 mg/kg, i. v) exhibited an increase in time to occlusion in this rodent model and presence of the L-NAME and glibenclamide had inhibited the activity of capsaicin.Conclusion: In our study, capsaicin (50 µM, 100µM) exhibited potent anti-platelet activity in ADP-induced platelet aggregation, similarly capsaicin exhibited significant anti-platelet action in the ex-vivo study. Moreover, the presence of L-NAME and glibenclamide inhibited the anti-thrombotic and anti-platelet action of capsaicin. Therefore, it was concluded that NO and KATP may be involved in the anti-thrombotic action of capsaicin.


1995 ◽  
Vol 269 (4) ◽  
pp. C917-C922 ◽  
Author(s):  
K. Yoshioka ◽  
J. W. Fisher

We have previously reported that nitric oxide (NO) and guanosine 3',5'-cyclic monophosphate (cGMP) may be involved in the regulation of erythropoietin (Epo) production in response to hypoxia both in vivo and in vitro (20). In the present studies, we have used the isolated perfused rat kidney to assess the role of NO in oxygen sensing and Epo production. When arterial PO2 was reduced from 100 mmHg (normoxemic) to 30 mmHg (hypoxemic) in the perfusate of this system, perfusate levels of Epo were significantly increased. This hypoxia-induced increase in Epo production was significantly decreased by the addition of NG-nitro-L-arginine methyl ester (L-NAME; 1 mM) to the perfusates. Hypoxemic perfusion also produced a significant increase, and L-NAME significantly inhibited this increase, in intracellular cGMP levels in the kidney when compared with normoxemic perfused kidneys. Quantitative reverse transcription-polymerase chain reaction also revealed that hypoxemic perfusion produced significant increases in Epo mRNA levels in the kidney, which was blocked by L-NAME. Our findings further support an important role for the NO/cGMP system in hypoxic regulation of Epo production.


Circulation ◽  
1998 ◽  
Vol 97 (15) ◽  
pp. 1481-1487 ◽  
Author(s):  
André Gries ◽  
Christoph Bode ◽  
Karlheinz Peter ◽  
Axel Herr ◽  
Hubert Böhrer ◽  
...  

1996 ◽  
Vol 270 (1) ◽  
pp. H411-H415 ◽  
Author(s):  
L. Morbidelli ◽  
C. H. Chang ◽  
J. G. Douglas ◽  
H. J. Granger ◽  
F. Ledda ◽  
...  

Vascular endothelial growth factor (VEGF) is a secreted protein that is a specific growth factor for endothelial cells. We have recently demonstrated that nitric oxide (NO) donors and vasoactive peptides promoting NO-mediated vasorelaxation induce angiogenesis in vivo as well as endothelial cell growth and motility in vitro; in contrast, inhibitors of NO synthase suppress angiogenesis. In this study we investigated the role of NO in mediating the mitogenic effect of VEGF on cultured microvascular endothelium isolated from coronary postcapillary venules. VEGF induced a dose-dependent increase in cell proliferation and DNA synthesis. The role of NO was determined by monitoring proliferation or guanosine 3',5'-cyclic monophosphate (cGMP) levels in the presence and absence of NO synthase blockers. The proliferative effect evoked by VEGF was reduced by pretreatment of the cells with NO synthase inhibitors. Exposure of the cells to VEGF induced a significant increment in cGMP levels. This effect was potentiated by superoxide dismutase addition and was abolished by NO synthase inhibitors. VEGF stimulates proliferation of postcapillary endothelial cells through the production of NO and cGMP accumulation.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2296-2296
Author(s):  
Gilbert Acevedo ◽  
Brian R. Branchford ◽  
Christine Brzezinski ◽  
Susan Sather ◽  
Gary Brodsky ◽  
...  

Abstract Background Growth Arrest Specific gene 6 (Gas6) is a ligand for the Tyro3/Axl/Mer (TAM) family of receptor tyrosine kinases found on the surface of platelets. Previous studies have shown that stimulation of these receptors results in amplification of platelet activation and thrombus stabilization via activation of phosphatidylinositol-3-kinase (PI3K) and Akt, leading to phosphorylation of the β3 integrin. Previous work (from our lab and others) demonstrated that inhibition of the Gas6/TAM pathway results in impaired platelet aggregation, reduced aggregate stability, and decreased platelet spreading. Additionally, knockout mice deficient in the receptor or ligand are protected from venous and arterial thrombosis, but retain normal tail bleeding times. Here, we describe development and characterization of novel Mer-selective small molecule inhibitors (SMIs) for thrombosis applications. Objectives To determine if Mer-selective SMIs can inhibit platelet aggregation and protect mice from thrombosis using in vitro and in vivo models Methods We used aggregometry and in vivo murine models of arterial and venous thrombosis to compare two Mer-selective SMIs (UNC Mer TKI1 and UNC Mer TKI2) and determine the most effective inhibitor of platelet aggregation and thrombus formation. The inhibitory effect of two doses (1µM and 5 µM) of the compounds were determined using standard light-transmission aggregometry after a 30 minute incubation with washed human platelets at 37 ¢ªC and compared to platelets treated with vehicle control or with a TKI control (UNC TKI Null), a SMI with similar structure but minimal anti-TAM activity. Both collagen/epinephrine-induced systemic venous thrombosis and FeCl3-induced carotid artery injury models were used to determine effects on thrombosis mediated by UNC TKIs. Wild type C57Bl/6 mice were treated with one of the two inhibitors and compared to mice treated with vehicle control. Mean values +/- SEM are shown and statistical significance (p<0.05) was determined using the student’s paired t-test. Results UNC Mer TKI1 exhibited more potent inhibition of platelet aggregation in vitro relative to UNC Mer TKI2, although both compounds mediated dose-dependent effects. At a concentration of 1uM, the maximum percent aggregation in UNC Mer TKI1-treated samples (n=7) was significantly greater than samples treated with UNC TKI Null (n=7), 20% DMSO vehicle (n=7), or UNC TKI2 (n=7), with mean values of 69 +/- 2.2%, 76.7 +/-1.8% (p<0.01), 76.9 +/- 2.1% (p=0.001), and 77 +/- 1.8% (p<0.001), respectively. At a concentration of 5 µM, UNC Mer TKI1-treated samples (n=7) exhibited a mean maximum percent aggregation of 23.7 +/- 2.4% compared to 50.4 +/- 4.8% for samples treated with UNC Mer TKI2 (n=7, p<0.001). UNC Mer TKIs also mediated protection from thrombus formation in mice. Following FeCl3 injury to the carotid artery, vehicle-treated mice (n=11) developed stable vessel occlusions with a mean time of 6.77 +/- 0.25 min. In contrast, stable occlusion occurred at a mean time of 46.6 +/- 7.72 min (n=9, p=0.001) for UNC Mer TKI1-treated mice. Survival times following venous injection of collagen and epinephrine were also significantly increased in mice treated with either UNC Mer TKI relative to the UNC TKI Null or vehicle controls. Mice pre-treated with UNC Mer TKI1 (n=9, p=0.04 compared to vehicle alone) or UNC Mer TKI2 (n=9, p=0.03 compared to vehicle alone) survived for 19.84 +/- 4.4 and 21.25 +/- 4.65 minutes, respectively. In contrast, mice given UNC TKI Null (n=3) or vehicle (n=21), only survived for 3.21 +/- 2.4 min and 3.09 +/- 0.22 minutes, respectively. Conclusion UNC Mer TKIs mediate dose-dependent inhibition of platelet aggregation and protect mice from arterial and venous thrombosis. Their pronounced activity compared to an inactive scaffold protein with minimal anti-TAM activity suggest that Gas6/TAM pathway inhibition is the mechanism of action for these novel compounds. UNC Mer TKI1 has more potent anti-thrombotic properties than UNC Mer TKI2. Disclosures: Branchford: University of Colorado: inventor on a patent application relevant to this work , inventor on a patent application relevant to this work Patents & Royalties. Sather:University of Colorado: inventor on a patent application relevant to this work , inventor on a patent application relevant to this work Patents & Royalties. DeRyckere:University of Colorado: inventor on a patent application relevant to this work , inventor on a patent application relevant to this work Patents & Royalties. Zhang:University of Colorado: inventor on a patent application relevant to this work , inventor on a patent application relevant to this work Patents & Royalties. Liu:University of Colorado: inventor on a patent application relevant to this work , inventor on a patent application relevant to this work Patents & Royalties. Earp:University of Colorado: inventor on a patent application relevant to this work , inventor on a patent application relevant to this work Patents & Royalties. Wang:University of Colorado: inventor on a patent application relevant to this work , inventor on a patent application relevant to this work Patents & Royalties. Frye:University of Colorado: inventor on a patent application relevant to this work , inventor on a patent application relevant to this work Patents & Royalties. Graham:University of Colorado: inventor on a patent application relevant to this work , inventor on a patent application relevant to this work Patents & Royalties. Di Paola:University of Colorado: inventor on a patent application relevant to this work , inventor on a patent application relevant to this work Patents & Royalties.


Blood ◽  
2010 ◽  
Vol 115 (20) ◽  
pp. 4083-4092 ◽  
Author(s):  
Frédéric Adam ◽  
Alexandre Kauskot ◽  
Paquita Nurden ◽  
Eric Sulpice ◽  
Marc F. Hoylaerts ◽  
...  

Abstract The role of c-Jun NH2-terminal kinase 1 (JNK1) in hemostasis and thrombosis remains unclear. We show here, with JNK1-deficient (JNK1−/−) mice, that JNK1 plays an important role in platelet biology and thrombus formation. In tail-bleeding assays, JNK1−/− mice exhibited longer bleeding times than wild-type mice (396 ± 39 seconds vs 245 ± 32 seconds). We also carried out in vitro whole-blood perfusion assays on a collagen matrix under arterial shear conditions. Thrombus formation was significantly reduced for JNK1−/− platelets (51%). In an in vivo model of thrombosis induced by photochemical injury to cecum vessels, occlusion times were 4.3 times longer in JNK1−/− arterioles than in wild-type arterioles. Moreover, in vitro studies carried out in platelet aggregation conditions demonstrated that, at low doses of agonists, platelet secretion was impaired in JNK1−/− platelets, leading to altered integrin αIIbβ3 activation and reduced platelet aggregation, via a mechanism involving protein kinase C. JNK1 thus appears to be essential for platelet secretion in vitro, consistent with its role in thrombus growth in vivo. Finally, we showed that ERK2 and another isoform of JNK affect platelet aggregation through 2 pathways, one dependent and another independent of JNK1.


Critical Care ◽  
2010 ◽  
Vol 14 (Suppl 2) ◽  
pp. P10
Author(s):  
R Simone Saia ◽  
EC Cárnio
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document